Содержание

 

Задание для курсового проектирования

Введение - цели и задачи курсового проектирования

1. Синтез и динамический анализ основного механизма

2. Силовой анализ рычажного механизма

3.Проектирование эвольвентного зубчатого зацепления

4. Синтез кулачкового механизма

Литература


Введение

 

Курсовой проект по дисциплине «Теория механизмов и машин» состоит из графической части и расчетно-пояснительной записки. Включает в себя четыре основных раздела:

1. Синтез и динамический анализ основного механизма.

2. Силовой анализ рычажного механизма.

3. Проектирование эвольвентного зубчатого зацепления и синтез планетарного механизма.

4. Синтез кулачкового механизма.

В первом разделе курсового проекта выполняется проектирования основного рычажного механизма, рассчитывается момент инерции маховика и определяется истинный закон движения звена приведения.

Во втором разделе рассчитываются силы и моменты инерции, приложенные к звеньям, определяются неизвестные реакции в кинематических парах и уравновешивающий момент.

В третьем разделе проводится расчет геометрических параметров, контрольных размеров, качественных и кинематических характеристик эвольвентного зубчатого зацепления. Проводится оценка спроектированной передачи по всем вышеизложенным параметрам. Исходные данные выбираются в соответствии с рекомендациями ГОСТ 16532-70. Здесь же выполняется синтез планетарного механизма.

В четвертом разделе проекта определяются основные параметры кулачкового механизма, и строится профиль кулачка, обеспечивающий заданный закон движения толкателя.

Графическая часть проекта выполняется на четырех листах формата А1 по разделам в соответствии с ГОСТ 2304-68 и ГОСТ 2302-68.


РАЗДЕЛ I

Синтез и динамический анализ основного механизма.

Целью данного раздела является проектирование основного кривошипно-шатунного механизма, определение длин его звеньев, расчет момента инерции маховика, определение истинного закона движения звена приведения.

1.1.  По формуле Чебышева определим степень подвижности механизма:

Согласно классификации Артоболевского механизм состоит из: механизма I класса - кривошип ОА, стойка О.

Структурная группа Ассура II класса, II порядка, II вида. - шатун АВ, ползун В; I(0;1) – II2 (2;3) – структурная форма механизма.

В целом механизм является механизмом II класса – по наивысшему.

1.2  По заданным исходным данным спроектируем основной кривошипно-шатунный механизм:

 м/с;

n1 =  об/мин;

Для этого необходимо определить размеры звеньев, найти положения центров тяжести.

1.2.1. Длину кривошипа lОА вычисляем по формуле:

м

1.2.2. Определяем длину шатуна:

 м

1.2.3. Определяем масштаб построения:

,

где ОА – отрезок произвольно взятый на чертеже, мм.

Принимаем

 

1.2.4. Определяем длину шатуна:

 мм

1.2.5.Определим положение центра масс шатуна:

м

AS2 =

1.3  Вычерчиваем в масштабе диаграмму изменения давления, расположив ось абсцисс параллельно перемещению ползуна и разметив ее в соответствии с положениями, занимаемыми ползуном.

 

Рассчитываем значения силы Р для каждого положения поршня и заносим в таблицу 1. Для этого определим площадь сечения цилиндра:

;

м2

 Н

Значение силы Р Таблица1.
Положения 0 1  2  3  4  5  6  7  8
Р, Н 0 1592 960  17246  17246 3562  0  0  0

1.4 Строим планы скоростей для соответствующих положений механизма. На планах изображены векторы скоростей, центров масс и их проекции на направление сил тяжести.

Построение начинаем с входного звена, т.е. с кривошипа ОА. Из произвольно взятой точки Pv, являющейся полюсом плана скоростей, откладываем в направлении движении кривошипа вектор из Pv в точку А, выбранной произвольно.

Выбираем Pva= 100 мм.

Определяем положение центра масс шатуна


 м.

Определяем отрезок на чертеже

 мм

 мм,

где ab – отрезок с плана скоростей , мм.

1.5 Для каждого положения механизма вычислим приведенный момент сил сопротивления , который определяем по методике [1] стр. 8-9.

Используя формулу [1.4] и планы скоростей, определим момент сил для данного механизма.

;

Определим массы звеньев:

5,5кг

,5кг;

кг.

Рассчитываем силы тяжести:

;

 H

 H

 H

Определим моменты движущих сил для всех положений момента и заносим результаты в таблицу 2:

Результаты вычислений приведенного момента сил сопротивления

Таблица 2.

Положение

, Н

0 0 0 0 0 0 0
1 0,6 -1 0,6 -1 0,67 -154
2 1 -1 1 -1 0 -1202
3 0,85 -1 0,85 -1 0,75 -2212
4 0 0 0 0 0 0
5 0,85 -1 0,85 -1 0,75 467
6 1 -1 1 -1 0 12
7 0,6 -1 0,6 -1 0,67 10,2

Строим диаграмму приведенных моментов сил сопротивления в зависимости от угла поворота  звена приведения (кривая 1).

Вычисляем масштаб оси абсцисс ():

 рад/мм

Определяем масштаб диаграммы приведенных моментов сил сопротивления.

, где

 – значение из таблицы 2;

 – произвольно принимаем 100 мм.

 

1.6  Вычислим для полученных положений механизма, значения приведенных моментов инерции звеньев и строим диаграмму приведенного момента инерции всех звеньев  в масштабе:

 

 мм

Приведенный момент инерции  определим из условия равенства его кинетической энергии, суммарной энергии всех подвижных звеньев механизма по методике [1] стр. 9;10;12 используя формулы (17;18;19) можно записать формулу  для нашего случая:

;

Вычислим  для всех положений и результаты заносим в таблицу 3:

Приведенный момент инерции.


Таблица 3.

Положение механизма

,

кг·м2

0 0 0 0,67 0,4489 1 1 0,0567
1 0,6 0,36 0,82 0,6724 0,7 0,49 0,129
2 1 1 1 1 0 0 0,2475
3 0,85 0,7225 0,9 0,81 0,7 0,49 0,19
4 0 0 0,67 0,4489 1 1 0,0567
5 0,85 0,7225 0,9 0,81 0,7 0,49 0,19
6 1 1 1 1 0 0 0,2475
7 0,6 0,36 0,82 0,6724 0,7 0,49 0,129

1.7 Строим диаграмму избыточных работ  путем интегрирования кривой .

Масштаб оси ординат диаграммы  вычисляем по формуле:

 Дж/мм

1.8  Строим диаграмму среднего приведенного момента на тех же осях и в том же масштабе .

Величину среднего приведенного момента можно определить графическим дифференцированием графика .

1.9  Используя уравнение

Строим диаграмму изменения запаса кинетической энергии .

Определим масштаб оси ординат этой диаграммы:

,

где

k – коэффициент пропорциональности, в нашем случае k=1;

 Дж/мм.

1.10  Определяем момент инерции дополнительной массы (маховика) обеспечивающий вращение ведущего звена с заданным коэффициентом неравномерности =1/55 и закон его движения.

Динамический синтез механизма проводим методом Виттенбауэра.

Метод Виттенбауэра.

Строим диаграмму «Энергия-масса» путем совместного графического решения двух графиков  и , исключая параметр .

Для удобства построения диаграммы  повернем на угол 90°.

На диаграмме  и Е отмечаем соответственно точки 1' и проводим через них горизонтальную и вертикальную линии, на пересечении которой отмечаем точку 1, повторив процедуру получим остальные точки. Полученные точки соединяем плавной линией, строим диаграмму «Энергия-масса».

1.11  Проведем под углами max и min касательные к кривой «Энергия-масса». Точки пересечения этих касательных с осью ординат обозначаем А и В. Значение tg этих углов вычислим по формулам:

1°27'

1°24'

 рад/сек


Информация о работе «Силовой расчёт механизмов»
Раздел: Промышленность, производство
Количество знаков с пробелами: 17902
Количество таблиц: 7
Количество изображений: 0

Похожие работы

Скачать
44063
20
4

... 9 -41 72,6 0,354 -2,5 2,01 -1,77 117,7 83,70 10 -71 81,3 0,301 -6,4 1,02 -4,6 97,2 75,17 11 -101 95,2 0,294 -7,8 -0,61 -5,1 -62,8 57,68 12 -131 105,8 0,337 -3,5 -1,84 -2,53 -124,76 89,04 2. Силовой расчёт. 2.1. Исходные данные: Усилие резани Рпс=130 кг. Веса звеньев G1=10 кг G2=2 кг. G3=16 кг. G4=2 кг. G5= 22 кг. Угловая скорость ...

Скачать
29088
5
1

... При графическом изображении физических величин масштаб обозначается буквой  с индексом, указывающим, к какой величине он относится. 1. Проектирование основного механизма и определение закона движения 1.1 Проектирование механизма по заданным условиям Механизм шагового транспортера автоматической линии вычерчен в масштабе =50мм/м. Положения начального звена 1 при вращении вокруг центра О ...

Скачать
12419
0
2

... механизма, а так же технологическими и экономическими особенностями изготовления механизма, а так же условиями, в которых будет работать будущий механизм. Поэтому вопрос практического проектирования зубчатых передач является достаточно актуальным в современной радиоэлектронной промышленности. 2. Анализ технического задания Техническое задание представляет из себя задание на расчёт параметров ...

Скачать
29792
1
1

... е. число неизвестных параметров реакций должно быть равно количеству уравнений статики, которые можно составить для их определения. Начинать силовой анализ необходимо с наиболее удаленной от ведущего звена структурной группы. 3.1 Определение реакций в кинематических парах структурных групп Чтобы определить величины и направления сил инерции, надо знать ускорения и массы звеньев. Ускорения ...

0 комментариев


Наверх