2. Расчет цилиндрической прямозубой передачи
2.1 Выбор материалов
Исходные данные:
Тип зуба – Косой. Тип передачи – нереверсивная.
Крутящий момент на шестерне Т2 = 111 Н•м
Частота вращения шестерни n2= 483,5 мин-1
Передаточное число u= 3,15
Режим нагружения – легкий
Коэффициент использования передачи:
в течение года – Kг = 0,7
в течение суток – Kс = 0,6
Cрок службы передачи в годах – L = 8
Продолжительность включения – ПВ = 20%
Для выбора материала определим размеры характерных сечений заготовок по формулам:
Dm=20*=20*=65.6 мм
Sm=1.2*(1+U)*= 1.2*(1+3.15) *=16.33 мм
Материалы выбираем по табл. 4 [1]
При выборе материала заготовок должны выполняться следующие условия:
Dm= Dm1; Sm= Sm1.
Шестерня:
Материал – Сталь 45
Термическая обработка – Улучшение
Твердость поверхности зуба – 269–302 HB
Колесо:
Материал – Сталь 45
Термическая обработка – Улучшение
Твердость поверхности зуба – 235–262 HB
Средние значение твердости поверхности зуба и колеса:
HB1=0.5*(HB1min+HB1max)=0.5*(269+302)=285.5
HB2=0.5*(HB2min+HB2max)=0.5*(235+262)=248.5
2.2 Допускаемые контактные напряжения
HPj =
где j=1 для шестерни, j=2 для колеса;
sHlim j - предел контактной выносливости (табл. 5 [1]),
sHlim1 = 2HB1+70=641 МПа
sHlim2 = 2HB2+70=567 МПа
SHj - коэффициент безопасности (табл. 5 [1]),
SH1= 1,1 SH2= 1,1
KHLj- коэффициент долговечности;
KHLj =1,
здесь NH0j – базовое число циклов при действии контактных напряжений (табл. 4 [1]),
NH01= 23,5*10 NH02 = 16.8*10
Коэффициент эквивалентности при действии контактных напряжений определим по табл. 6 [1] в зависимости от режима нагружения: h = 0,125
Суммарное время работы передачи в часах
th= 365L24KгКсПВ = 365*8*24*0,7*0,6*20 = 5887 ч
Суммарное число циклов нагружения
NSj = 60 njc th, NS2=
где с – число зацеплений колеса за один оборот, с = 1;
nj– частота вращенияj-го колеса, n2= 483,5 мин-1
NS1=1,71; NS2==0,54
Эквивалентное число циклов контактных напряжений, NHEj= h NΣj;
NHE1=0,21 NHE2=0,07
Коэффициенты долговечности
KHL1= 1,02 KHL2= 1,16
Допускаемые контактные напряжения для шестерни и колеса
sHP1==594,38 МПа sHP2= 597,93 МПа
Для прямозубых передач sHP=sHP2, для косозубых и шевронных передач
sHP=0.45 (sHP1+sHP2)=0,45*(594,38+597,93)=536,54 МПаsHPI
sHPI=1.23*sHP1=731.1 МПа
Допускаемые контактные напряжения передачи:
sHP= 536.54 Мпа
... в каждом конкретном случае исходя из габаритов проектируемого технического оборудования, места расположения насосной станции и рабочих органов машины, способов монтажа гидрооборудования и других условий. Для технологического оборудования малых и средних типоразмеров можно принять длины участков в следующих пределах: всасывающий трубопровод- до 1 метра, напорный и сливной до 5 метров. Для ...
... характеристик решим графо-аналитическим методом, который основан на построении ряда последовательных положений звеньев механизма и соответствующих им планов скоростей. Механизм привода пресс-автомата с плавающим ползуном в масштабе μL=0,006 м/мм изобразим в двенадцати положениях. Положение механизма задаётся положением кривошипа 1. Каждое последующее положение кривошипа 1 отличается от ...
тора D = 275 мм Основная часть 1. Выбор электродвигателя, кинематический расчет привода 1.1 Необходимая мощность электродвигателя КПД редуктора: h = hпк2 hзц hк = 0,9952*0,98*0,95 = 0,92 Где hпк = 0,995 - КПД пары подшипников качения [2, с. 304] hзп = 0,98 - КПД зубчатой цилиндрической закрытой передачи hк = 0,95 - КПД клиноременной передачи [2, с. 304] Необходимая ...
... 2. Тип элементов, входящих в изделие и количество элементов данного типа; 3. Величины интенсивности отказов элементов , входящих в изделие. Все элементы схемы ячейки 3 БУ привода горизонтального канала наведения и стабилизации ОЭС сведены в табл. 13.1. Среднее время безотказной работы блока можно рассчитать по формуле: (13.5) где L - интенсивность отказов БУ следящего привода. ...
0 комментариев