8.2.1 Ограничение по шероховатости

Реальная шероховатость должна удовлетворять данному неравенству:

Ra ≤ Ra0, (8.2)

где Ra0 = 0,8 - требуемая шероховатость.

Искомая шероховатость определится из ранее найденной зависимости:

 (8.3)

Проведем некоторые преобразования:

;

.

Прологарифмировав, получим:

;

.

Ограничение по шероховатости:

Рис.8.3.


Рис.8.3. позволяет определить допустимую зернистость и глубину лунки в логарифмических координатах по первому ограничению.

8.2.2 Ограничение по температуре

Получаемая в процессе шлифования температура в зоне резания должна быть меньшей или равной допустимой: T ≤ T0, (8.4) где Т0 = 400 - допустимая температура в зоне резания.

Искомая температура определится из ранее найденной зависимости:

 (8.5)

Проводим некоторые преобразования:

; .

Прологарифмировав, получим:

;

Ограничение по температуре в зоне шлифования:

Рис.8.4.


Рис.8.4. позволяет определить допустимую зернистость и глубину лунки в логарифмических координатах по второму ограничению.

8.2.3 Ограничение по мощности привода главного движения станка

Эффективная мощность станка определяется из неравенства:

Nэ ≤ η∙N, (8.6)

Также эффективную мощность можно найти по формуле:

Nэ = , (8.7)

где  - КПД станка;

 - паспортная мощность станка;

 - скорость круга.

Сила резания Pz определится из ранее найденной зависимости:

 (8.8)

Проводим некоторые преобразования:

;

;

.

Прологарифмировав, получим:


; .

Ограничение по мощности привода главного движения станка:

Рис.8.5.

Рис.8.5. позволяет определить допустимую зернистость и глубину лунки в логарифмических координатах по третьему ограничению.

8.2.4 Ограничение по зернистости

Зернистость абразивного инструмента должна находится в пределах, установленных неравенством: 8 ≤ Z ≤ 40 (8.9). Прологарифмировав, получим: lgZ≥lg8; X1≥0,9; lgZ≤lg40; X1≤1,6.

Ограничение по зернистости абразивного инструмента:

Рис.8.6.

Рис.8.6. позволяет определить допустимую зернистость в логарифмических координатах.

8.2.5 Ограничение по глубине лунки

Глубина лунки абразивного инструмента должна находится в пределах, установленных неравенством:

3 ≤ H ≤ 8 (8.10)

Прологарифмировав, получим:

lgН≥lg3;

X2≥0,5;

lgН≤lg8;

X2≤0,9.

Ограничение по глубине лунки абразивного инструмента:

Рис.8.7.

Рис.8.7. позволяет определить допустимую глубину лунки в логарифмических координатах.

8.2.6 Определение целевой функции

Ранее было определено, что целевой функцией является износ шлифовального круга:

q → min (8.11)

Износ шлифовального круга определим по ранее найденной зависимости:

 (8.12)

Прологарифмировав, получим:

; .

8.3 Оптимизация режимов резания графическим методом

На рис.8.8. построим ограничение и увидим область оптимальных значений зернистости и глубины лунки шлифовального круга в логарифмических координатах. Область оптимальных значений:

Рис.8.8.

Из графика (рис.8.8) видно, что оптимальными точками из всей области значений являются точки А и Б. Теперь надо узнать, какая из них будет наиболее оптимальной, т.е. износ шлифовального круга будет наименьшим. Очевидно, что это точка А. Найдём её координаты и, тем самым, узнаем оптимальные значения зернистости и глубины лунки шлифовального круга.

Координаты точки А:

X1 = 0,9; Х2 = 0,9.

Значит lg Z = 0,9 b lg H = 0,9

Z = 10 0,9 = 8

H = 10 0,9 = 8

Исходя из полученных результатов, делаем вывод, что при данных условиях шлифования оптимальным является круг со следующими характеристиками: зернистость Z=8, глубина лунки Н=8. Этим характеристикам соответствует круг средней твердости со степенью твердости СТ3.

Вывод

Использование специальной литературы и результатов экспериментальных данных, а также применение методов математического моделирования позволили внести в шлифовальную операцию обработки кулачка патрона усовершенствование. Данное усовершенствование позволит подобрать на операцию максимально стойкий к износу шлифовальный круг, что в свою очередь повысит время его работы без правки и, тем самым, снизит затраты времени на обслуживание станка.


9. Выбор и проектирование приспособления

Задача раздела - спроектировать приспособление для базирования и закрепления кулачка на I установе операции 30 при его обработке на горизонтально-фрезерном станке 6Р80Г.

9.1 Сбор исходных данных

Фрезеровать поверхности 3, 4, 5, 6, 7, выдерживая размеры 38-0,26, 45-0,26, 85-0,3, 34-0,23, 53-0,23, 85-0,28, а также поверхности 17, 18, выдерживая размеры 59-0,26, 148-0,28.

Рис.9.1

Вид и материал заготовки - 19ХГН, sв = 785 МПа, после фрезерования габаритов. Режущий инструмент - фреза торцовая Æ40 мм, Т15К6, фреза двухугловая Æ80 мм, Т15К6.

Металлорежущий станок - горизонтально-фрезерный станок 6Р80Г.

Режимы резания - подача Sz= 0,09/0,08 мм, V = 460/340 м/мин, n = 1000/800 об/мин.

Тип оснастки - одноместное специализированное безналадочное приспособление (СБП).

9.2 Расчет сил резания

Главная составляющая силы резания - окружная сила Pz для фрез, работающих на 30 операции, была посчитана в предыдущих главах. Рассчитаем остальные составляющие силы резания. Для этого воспользуемся соотношениями сил, представленных в [5]. Для торцовой фрезы: Pz = 1087 Н; Ph = 0,6. Pz = 652,2 Н, Pv = 0,6. Pz = 652,2 Н. Для двухугловой фрезы: Pz = 718,6 Н; Ph = 0,6. Pz = 431,2 Н, Pv = 0,7. Pz = 503 Н.

9.3 Расчет усилия зажима

Схема закрепления заготовки, включающая схему установки заготовки, разработанную на основе теоретической схемы базирования представлена на рисунке 9.2. Исходя из схемы закрепления и руководствуясь [5], усилие зажима в первом случае (Рис.9.2, а) найдем по формулам:

и (9.1)

во втором случае (Рис.9.2, б):

, (9.2)

Схема закрепления заготовки:

а) б)

Рис.9.2

где fОП, fЗМ - коэффициенты трения при контакте заготовки с опорами и зажимным механизмом. При контакте обработанных поверхностей заготовки с опорами и зажимным механизмом f = 0,16;

 

 -

коэффициент запаса, учитывающий нестабильность силовых воздействий на заготовку.

Коэффициенты: Ко=1,5 - гарантированный коэффициент запаса; К1=1,2 - коэффициент, учитывающий увеличение сил резания из-за случайных неровностей на обрабатываемых поверхностях заготовки при черновой обработке; К2=1,6 - коэффициент, учитывающий затупление инструмента при черновом торцовом фрезеровании; К3=1,2 - коэффициент, учитывающий увеличение сил резания при прерывистом резании; К4=1,0 - характеризует постоянство силы, развиваемой пневматическим устройством двустороннего действия; К5=1,0 - характеризует эргономику немеханизированного зажимного механизма; К6=1,0 - учитывается только при наличии моментов, стремящихся повернуть заготовку, установленную плоской поверхностью.

К = 1,5 ·1,2 ·1,6 ·1,2 ·1,0 ·1,0 ·1,0 = 3,46

При фрезеровании торцовой фрезой сила зажима:

 Н;

Н.

При фрезеровании двухугловой фрезой сила зажима:

 Н.

 

Принимаем для дальнейших расчетов наибольшую из полученных сил: W = 7378 Н.

9.4 Расчёт зажимного механизма и силового привода

При расчёте зажимного механизма определяем усилие Q, создаваемое силовым приводом.

Величина усилия Q на штоке силового привода равна:

, (9.3)

где i - передаточное отношение, для рычажного зажимного механизма равное:

, (9.4)

где lQ - расстояние от опоры зажимного механизма до силы Q;

lW - расстояние от опоры зажимного механизма до силы P.

.

Q = 7378/2 = 3689 H.

Диаметр поршня пневматического привода рассчитывается по формуле:

, (9.5)

где Р - давление рабочей среды. Примем расчетное давление Р = 0,4МПа.

 

мм

Исходя из стандартных диаметров поршней пневмоцилиндров, принимаем ДП = 125 мм.

Вывод: при расчёте зажимного механизма и силового привода было определено усилие W = 7378 Н, создаваемое пневматическим силовым приводом с диаметром поршня ДП = 125 мм, усилие зажима Q = 3689 H.

9.5 Описание приспособления

Приспособление предназначено для базирования и закрепления заготовки кулачка при ее обработке на горизонтально-фрезерном станке 6Р80Г.

Тиски состоят из корпуса 4 с встроенным пневмоцилиндром 3, штока 1, передающего усилие зажима через качающийся рычаг 2 подвижной губке 5, расположенной на базовой поверхности корпуса тисков, в Т-образных пазах которой установлена неподвижная губка 6 и базовый угольник 7. Тиски устанавливаются на основании 8, которое крепиться болтами к столу станка.

Приспособление работает следующим образом: заготовку устанавливают на базовый угольник 7, совмещая со всеми опорами 17. После этого шток пневмоцилиндра 1 двигает качающийся рычаг 2 вниз, который в свою очередь двигает подвижную губку 5, поджимающую заготовку к опорам 17. Процесс закрепления окончен. После обработки шток 1 пневмоцилиндра двустороннего действия двигает качающийся рычаг 2 вверх. Процесс раскрепления аналогичен процессу закрепления. Как только подвижная губка 5 отойдет от поверхности обработанной детали, она снимается с базового угольника 7. Система принимает исходное положение.


10. Выбор и проектирование режущего инструмента

В качестве объекта проектирования примем торцовую фрезу со вставными ножами, в основу конструкции которой положим результаты проведенных в предыдущих разделах патентных исследований.

Определим исходные данные для проектирования:

обрабатываемый материал: сталь 19 ХГН;

ширина фрезерования: В = 33;

модель станка: 6Р80Г.

10.1 Выбор типа конструкции инструмента

Согласно рекомендациям [20], а также результатам патентных исследований, при черновом фрезеровании стали 19ХГН выбираем сборную насадную торцовую фрезу со вставными ножами.


Информация о работе «Разработка группового техпроцесса изготовления кулачков»
Раздел: Промышленность, производство
Количество знаков с пробелами: 145753
Количество таблиц: 28
Количество изображений: 28

Похожие работы

Скачать
159496
20
19

... , приходящегося на него, менее 138 м3 . Если естественное проветривание невозможно, то в такие помещения нужно подавать не менее 60 м3/ч на одного человека. Среди операций технологического процесса изготовления корпуса присутствуют операции шлифования, на которых воздух загрязняется абразивной пылью, поэтому следует предусмотреть местную вытяжную вентиляцию рисунок 5 [12]. Для улавливания ...

Скачать
118431
12
10

... и допусков проставляют на операционных эскизах обработки. При выполнении размерного анализа студенты пользуются знаниями, полученными при изучении курсов "Основы взаимозаменяемости, стандартизации и технических измерений", " Основы технологии машиностроения", и указаниями [2, с. 550-633; 7, c. 10l-113; 8, с. 126-142; 9, с. 49-55; 16; 23, с. 127-141 и др.] П р и м е р 9. Расстояние между торцом ...

Скачать
102679
18
11

... ТП изготовления детали "Корпус ТМ966.2120-57" и статистического приемочного контроля Применение статистического регулирования технологического процесса изготовления детали "Корпус ТМ966.2120-57" представляет собой корректировку параметров процесса по результатам выборочного контроля параметров продукции, осуществляемого для технологического обеспечения заданного уровня качества. Статистическое ...

Скачать
58597
16
8

... , мм 0,2 0,2 0,2 0,25 0,25 Основной припуск на размер, мм 2,7 2,7 1,8 2,5 2,0 Номинальный размер элемента детали, мм 147 122 70 331 115 5. Анализ технологической операции существующего или типового технологического процесса Анализ будем производить на основании базового технологического процесса. В данном технологическом процессе последовательность ...

0 комментариев


Наверх