1. Собственно случайная выборка.

Выборка называется собственно случайной, если при извлечении выборки объема n все возможные комбинации из n элементов, которые могут быть получены из генеральной совокупности объема N, имеют равную вероятность быть извлеченными.

По определению, при собственно случайной выборке выполняется принцип случайности.

Примером собственно-случайного отбора могут служить тиражи выигрышей: из общего количества выпущенных билетов наугад отбирается определенная часть номеров, на которые приходятся выигрыши. Причем всем номерам обеспечивается равная возможность попадания в выборку. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки.

Доля выборки есть отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:

(1)


При правильной научной организации выборки ошибки репрезентативности можно свести к минимальным значениям, в результате - выборочное наблюдение становится достаточно точным.

а) При отборе способом жеребьевки все элементы генеральной совокупности предварительно нумеруются и номера их наносятся на карточки. После тщательной перетасовки из пачки любым способом (подряд или в любом другом порядке) выбирается нужное число карточек, соответствующее объему выборки. При этом можно либо откладывать отобранные карточки в сторону (тем самым осуществляется так называемый бесповторный отбор), либо, вытащив карточку, записать ее номер и возвратить в пачку, тем самым, давая ей возможность появиться в выборке еще раз (повторный отбор). При повторном отборе всякий раз после возвращения карточки пачка должна быть тщательно перетасована.

б) Принцип таблицы случайных чисел. Начиная с любого места таблицы, берем четыре следующих друг за другом числа. Эти числа и будут номерами людей в списке, которых следует отобрать в выборку (числа, превышающие численность генеральной совокупности, опускаются). Для очень больших совокупностей отбор с помощью таблицы случайных чисел становится трудно осуществимым, так как сложно перенумеровать всю совокупность. Здесь лучше применить механический отбор.

Различают повторную и бесповторную выборку. При повторном отборе каждый выбранный элемент возвращается в ГС. При бесповторном отборе выбранный элемент не возвращается в ГС.

2. Механическая выборка требует список характеристик респондентов (фамилии, адреса, телефоны и т.д.). Из этого списка через равные промежутки люди отбираются в выборку. Этот промежуток называется шагом выборки. Механический отбор производится следующим образом. Если формируется 10%-ная выборка, т. е. из каждых десяти элементов должен быть отобран один, то вся совокупность условно разбивается на равные части по 10 элементов. Затем из первой десятки выбирается случайным образом элемент. Например, жеребьевка указала девятый номер. Отбор остальных элементов выборки полностью определяется указанной пропорцией отбора номером первого отобранного элемента. В рассматриваемом случае выборка будет состоять из элементов 9, 19, 29 и т. д.

3. Типический отбор

Следует отличать типический отбор от отбора типичных объектов. Отбор типичных объектов применялся при бюджетных обследованиях. При этом отбор "типичных селений" или "типичных хозяйств" производился по некоторым экономическим признакам, например по размерам землевладения на двор, по роду занятий жителей и т. п. Отбор такого рода не может быть основой для применения выборочного метода, так как здесь не выполнено основное его требование - случайность отбора.

При собственно типическом отборе в выборочном методе совокупность разбивается на группы, однородные в качественном отношении, а затем уже внутри каждой группы производится случайный отбор. Типический отбор организовать сложнее, чем собственно случайный, так как необходимы определенные знания о составе и свойствах генеральной совокупности, но зато он дает более точные результаты.

4. Серийный отбор. При серийном отборе вся совокупность разбивается на группы (серии). Затем путем случайного или механического отбора выделяют определенную часть этих серий и производят их сплошную обработку. По сути дела, серийный отбор представляет собой случайный или механический отбор, осуществленный для укрупненных элементов исходной совокупности.

Кроме описанных выше классических способов отбора в практике выборочного метода используются и другие способы.

Изучаемая совокупность может иметь многоступенчатую структуру, она может состоять из единиц первой ступени, которые, в свою очередь, состоят из единиц второй ступени, и т. д.

К таким совокупностям можно применять многоступенчатый отбор, т. е. последовательно осуществлять отбор на каждой ступени.

Примером двухступенчатого механического отбора может служить давно практикуемый отбор бюджетов рабочих. На первой ступени механически выбираются предприятия, на второй - рабочие, бюджет которых обследуется.

Ошибки выборки

Рассмотрим некоторые вопросы теории выборочного метода. Применяя выборочный метод в статистике, обычно используют два основных вида обобщающих показателей: среднюю величину количественного признака и относительную величину альтернативного признака (долю или удельный вес единиц в, статистической совокупности, которые отличаются от всех других единиц этой совокупности только наличием изучаемого признака).

Выборочная доля w, или частость, определяется отношением числа единиц, обладающих изучаемым признаком m, к общему числу единиц выборочной совокупности n:

w = m/n.(2)

Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки.

Ошибка выборки e или, иначе говоря, ошибка репрезентативности представляет собой разность соответствующих выборочных и генеральных характеристик:

для средней количественного признака

(3)


для доли (альтернативного признака)

(4)

Ошибка выборки свойственна только выборочным наблюдениям. Чем больше значение этой ошибки, тем в большей степени выборочные показатели отличаются от соответствующих генеральных показателей.

Выборочная средняя и выборочная доля по своей сути являются случайными величинами, которые могут принимать различные значения в зависимости от того, какие единицы совокупности попали в выборку. Следовательно, ошибки выборки также являются случайными величинами и могут принимать различные значения. Поэтому определяют среднюю из возможных ошибок - среднюю ошибку выборки m.

Средняя ошибка выборки также зависит от степени варьирования изучаемого признака. Степень варьирования, как известно, характеризуется дисперсией s2 или w(l-w) - для альтернативного признака. Чем меньше вариация признака, а следовательно, и дисперсия, тем меньше средняя ошибка выборки, и наоборот. При нулевой дисперсии (признак не варьирует) средняя ошибка выборки равна нулю, т.е. любая единица генеральной совокупности будет совершенно точно характеризовать всю совокупность по этому признаку.

Зависимость средней ошибки выборки от ее объема и степени варьирования признака отражена в формулах, с помощью которых можно рассчитать среднюю ошибку выборки в условиях выборочного наблюдения, когда генеральные характеристики (, р) неизвестны, и следовательно, не представляется возможным нахождение реальной ошибки выборки непосредственно по формулам (3), (4).

При случайном повторном отборе средние ошибки теоретически рассчитывают по следующим формулам:


для средней количественного признака

(5)

для доли (альтернативного признака)

(6)

Поскольку практически дисперсия признака в генеральной совокупности s2 точно неизвестна, на практике пользуются значением дисперсии S2 , рассчитанным для выборочной совокупности на основании закона больших чисел, согласно которому выборочная совокупность при достаточно большом объеме выборки достаточно точно воспроизводит характеристики генеральной совокупности.

Таким образом, расчетные формулы средней ошибки выборки при случайном повторном отборе будут следующие:

для средней количественного признака

(7)

для доли (альтернативного признака)

(8)

Однако дисперсия выборочной совокупности не равна дисперсии генеральной совокупности, и следовательно, средние ошибки выборки, рассчитанные по формулам (7) и (8), будут приближенными. Но в теории вероятностей доказано, что генеральная дисперсия выражается через выборную следующим соотношением:

(9)

Так как n / (n - 1) при достаточно больших n величина, близкая к единице, то можно принять, что s2 » S2 , а следовательно, в практических расчетах средних ошибок выборки можно использовать формулы (7) и (8). И только в случаях малой выборки (когда объем выборки не превышает 30) необходимо учитывать коэффициент n / (n - 1) и исчислять среднюю ошибку малой выборки по формуле:

(10)

При случайном бесповторном отборе в приведенные выше формулы расчета средних ошибок выборки необходимо подкоренное выражение умножить на 1-(n / N), поскольку в процессе бесповторной выборки сокращается численность единиц генеральной совокупности. Следовательно, для бесповторной выборки расчетные формулы средней ошибки выборки примут такой вид:

для средней количественного признака

(11)

для доли (альтернативного признака)


(12)

Механическая выборка состоит в том, что отбор единиц в выборочную совокупность из генеральной, разбитой по нейтральному признаку на равные интервалы (группы), производится таким образом, что из каждой такой группы в выборку отбирается лишь одна единица. Чтобы избежать систематической ошибки, отбираться должна единица, которая находится в середине каждой группы.

При организации механического отбора единицы совокупности предварительно располагают (обычно в списке) в определенном порядке (например, по алфавиту, местоположению, в порядке возрастания или убывания значений какого-либо показателя, не связанного с изучаемым свойством, и т.д.), после чего отбирают заданное число единиц механически, через определенный интервал. При этом размер интервала в генеральной совокупности равен обратному значению доли выборки. Так, при 2 %-ной выборке отбирается и проверяется каждая 50-я единица (1:0,02), при 5 %-ной выборке - каждая 20-я единица (1:0,05), например, сходящая со станка деталь.

При достаточно большой совокупности механический отбор по точности результатов близок к собственно-случайному. Поэтому для определения средней ошибки механической выборки используют формулы собственно-случайной бесповторной выборки (11), (12).

Для отбора единиц из неоднородной совокупности применяется так называемая типическая выборка.

Типическая выборка используется в тех случаях, когда все единицы генеральной совокупности можно разбить на несколько качественно однородных, однотипных групп по признакам, от которых зависят изучаемые показатели.

При обследовании предприятий такими группами могут быть, например, отрасль и подотрасль, формы собственности. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.

Типическая выборка обычно применяется при изучении сложных статистических совокупностей. Например, при выборочном обследовании семейных бюджетов рабочих и служащих в отдельных отраслях экономики, производительности труда рабочих предприятия, представленных отдельными группами по квалификации.

Типическая выборка дает более точные результаты по сравнению с другими способами отбора единиц в выборочную совокупность. Типизация генеральной совокупности обеспечивает репрезентативность такой выборки, представительство в ней каждой типологической группы, что позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки. Поэтому при определении средней ошибки типической выборки в качестве показателя вариации выступает средняя из внутригрупповых дисперсий.

Среднюю ошибку выборки находят по формулам:

для средней количественного признака

(13,14)

для доли (альтернативного признака)

(15,16)


где  - средняя из внутригрупповых дисперсий по выборочной совокупности;

 - средняя из внутригрупповых дисперсий доли (альтернативного признака) по выборочной совокупности.

Серийная выборка предполагает случайный отбор из генеральной совокупности не отдельных единиц, а их равновеликих групп (гнезд, серий) с тем, чтобы в таких группах подвергать наблюдению все без исключения единицы.

Применение серийной выборки обусловлено тем, что многие товары для их транспортировки, хранения и продажи упаковываются в пачки, ящики и т.п. Поэтому при контроле качества упакованного товара рациональнее проверить несколько упаковок (серий), чем из всех упаковок отбирать необходимое количество товара.

Поскольку внутри групп (серий) обследуются все без исключения единицы, средняя ошибка выборки (при отборе равновеликих серий) зависит только от межгрупповой (межсерийной) дисперсии.

Среднюю ошибку выборки для средней количественного признака при серийном отборе находят по формулам:

(17,18)

где r - число отобранных серий; R - общее число серий.

Межгрупповую дисперсию серийной выборки вычисляют следующим образом:


(19)

где  - средняя i - й серии;  - общая средняя по всей выборочной совокупности.

Средняя ошибка выборки для доли (альтернативного признака) при серийном отборе:

(20,21)

Межгрупповую (межсерийную) дисперсию доли серийной выборки определяют по формуле:

(22)

где wi - доля признака в i - й серии;  - общая доля признака во всей выборочной совокупности.

Предельную ошибку выборки для средней () при повторном отборе можно рассчитать по формуле:

(23)

где t - нормированное отклонение - "коэффициент доверия", зависящий от вероятности, с которой гарантируется предельная ошибка выборки;  - средняя ошибка выборки.

Аналогичным образом может быть записана формула предельной ошибки выборки для доли Δw при повторном отборе:

(24)

При случайном бесповторном отборе в формулах расчета предельных ошибок выборки (23) и (24) необходимо умножить подкоренное выражение на 1 - (n / N).

Предельная ошибка выборки позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы:

(25.26)

Это означает, что с заданной вероятностью можно утверждать, что значение генеральной средней следует ожидать в пределах от  до .

Наряду с абсолютным значением предельной ошибки выборки рассчитывается и предельная относительная ошибка выборки, которая определяется как процентное отношение предельной ошибки выборки к соответствующей характеристике выборочной совокупности:

(27,28)


Расчетная часть

 

Условие:

Имеются следующие выборочные данные по предприятиям одной из отраслей промышленности региона в отчетном году (выборка 20% - ная механическая), млн. руб.:

Таблица 1

№ предприятия

п/п

Выручка от продажи продукции Затраты на производство и реализацию продукции
1 36,45 30,255
2 23,4 20,124
3 46,54 38,163
4 59,752 47,204
5 41,415 33,546
6 26,86 22,831
7 79,2 60,984
8 54,72 43,776
9 40,424 33,148
10 30,21 25,376
11 42,418 34,359
12 64,575 51,014
13 51,612 41,806
14 35,42 29,753
15 14,4 12,528
16 36,936 31,026
17 53,392 42,714
18 41 33,62
19 55,68 43,987
20 18,2 15,652
21 31,8 26,394
22 39,1204 32,539
23 57,128 45,702
24 28,44 23,89
25 43,344 35,542
26 70,72 54,454
27 41,832 34,302
28 69,345 54,089
29 35,903 30,159
30 50,22 40,678

 

Задание 1

Признак – уровень рентабельности продукции (рассчитайте путем деления прибыли от продаж, т.е. разности между выручкой от продажи продукции и затратами на ее производство и реализацию, на затраты на производство и реализацию продукции).

Число групп – пять.

Задание 2

Связь между признаками – затраты на производство и реализацию продукции и уровень рентабельности продукции.

Задание 3

По результатам выполнения задания 1 с вероятностью 0,997 определите:

1. Ошибку выборки среднего уровня рентабельности организации и границы, в которых будет находиться средний уровень рентабельности в генеральной совокупности;

2. Ошибку выборки доли организаций с уровнем рентабельности продукции 23,9% и более и границы, в которых будет находится генеральная доля.

Задание 4

Выпуск продукции и удельный расход стали по региону, в текущем периоде характеризуется следующими данными:

Таблица 2

Вид продукции Фактический выпуск продукции, шт. Расход стали на единицу продукции, кг
по норме фактически
А 320 36 38
Б 250 15 12
В 400 10 9

Определите:

1. Индивидуальные индексы выполнения норм расхода стали.

2. Общий индекс выполнения норм расхода стали на весь выпуск продукции.

3. Абсолютную экономию (перерасход) стали.

Решение:

Задание 1.

1. В среде MS Excel рассчитываем уровень рентабельности по формуле, данной в условии задачи:

 

Уровень рентабельности =

Таблица 3

№ предприятия

п/п

Выручка от продажи продукции Затраты на производство и реализацию продукции Уровень рентабельности продукции
1 36,45 30,255 0,2048
2 23,4 20,124 0,1628
3 46,54 38,163 0,2195
4 59,752 47,204 0,2658
5 41,415 33,546 0,2346
6 26,86 22,831 0,1765
7 79,2 60,984 0,2987
8 54,72 43,776 0,2500
9 40,424 33,148 0,2195
10 30,21 25,376 0,1905
11 42,418 34,359 0,2346
12 64,575 51,014 0,2658
13 51,612 41,806 0,2346
14 35,42 29,753 0,1905
15 14,4 12,528 0,1494
16 36,936 31,026 0,1905
17 53,392 42,714 0,2500
18 41 33,62 0,2195
19 55,68 43,987 0,2658
20 18,2 15,652 0,1628
21 31,8 26,394 0,2048
22 39,1204 32,539 0,2023
23 57,128 45,702 0,2500
24 28,44 23,89 0,1905
25 43,344 35,542 0,2195
26 70,72 54,454 0,2987
27 41,832 34,302 0,2195
28 69,345 54,089 0,2821
29 35,903 30,159 0,1905
30 50,22 40,678 0,2346

Информация о работе «Выборочный метод изучения производственных и финансовых показателей»
Раздел: Экономика
Количество знаков с пробелами: 35156
Количество таблиц: 13
Количество изображений: 5

Похожие работы

Скачать
51424
11
4

... невозвращенного шара"). Таким образом, при бесповторной выборке численность единиц генеральной совокупности сокращается в процессе исследования. 1.2 Финансовые показатели Финансовые показатели - набор показателей, использующихся для исследования эффективности деятельности компании, и измерения степени риска ее операций. Обычно выделяют четыре группы показателей: коэффициенты рентабельности, ...

Скачать
57914
21
2

... если перенести начало отсчета в середину рассматриваемого периода. Прогнозирование и интерполяция Прогнозирование (экстраполяция) – это определение будущих размеров экономического явления. Интерполяция – это определение недостающих показателей уровней ряда. Наиболее простым методом прогнозирования является расчет средних характеристик роста (средний абсолютный прирост, средний темп роста и т.д.) ...

Скачать
50998
15
5

... тенденции свидетельствуют о благоприятном развитии экономики, расширении деятельности предприятий и организаций, увеличении предпринимательской активности.2. Расчетная часть   Вариант №2 Тема. Статистические методы изучения инвестиций Имеются следующие выборочные данные по 25-ти однотипным предприятиям одного из регионов РФ, для анализа инвестирования предприятий собственными средствами за ...

Скачать
47400
19
11

... группы, установление связи и ее направление. Индексный метод является гибким аналитическим инструментом и может применяться в анализе показателе производственной, финансовой, инвестиционной и других видах деятельности предприятия (фирмы). Корреляционный и регрессионный анализ являются довольно сложной операцией. Исходными предпосылками для их проведения являются: случайный характер факторов, ...

0 комментариев


Наверх