2. Основні відомості з теорії функцій, що відбивають
Розглянемо систему
(1)
уважаючи, що її права частина безперервна й має безперервні частки похідні по . Загальне рішення цієї системи у формі Коші позначимо через . Через позначимо інтервал існування рішення
Нехай
Визначення: функцією, що відбиває, (1) системи назвемо функцію
обумовлену формулою
(2)
або формулами
Для функції, що відбиває, справедливі властивості:
1) Для будь-якого рішення
системи (1) вірна тотожність
(3)
2) Для функції, що відображає, будь-якої системи виконані тотожності:
(4)
3) Диференцюєма функція
буде функцією, що відбиває, (1) системи тоді й тільки тоді, коли вона задовольняє рівнянням у частинних похідних
(5)
і початковій умові
(6)
Рівняння (5) будемо називати основним рівнянням (основним співвідношенням) для функції, що відбиває.
Доказ. Властивість 1) треба безпосередньо з визначення (2). Для доказу властивості 2) помітимо, що відповідно до властивості 1) для будь-якого рішення системи (1) вірні тотожності
Із цих тотожностей у силу того, що через кожну крапку проходить деяке рішення системи (1), і випливають тотожності (5).
Приступимося до доказу властивості 3). Нехай – функція, що відбиває, (1)системи . Тоді для неї вірна тотожність (3). Диференціюємо цю тотожність по й скористаємося тим, що – рішення системи (1), і самою тотожністю (3). Одержимо тотожність
з якого в силу довільності рішення треба, що – рішення системи (5). Початкова умова відповідно до властивості 2) так само виконується.
Нехай деяка функція задовольняє системі (5) й умові (6). Тому що цій системі й цій умові задовольняє так само й функція, що відбиває, то з одиничності рішення (5) задачі (6) - функція повинна збігатися з функцією, що відбиває. Властивість 3) доведено.
Лема Основна лема 3 Нехай права частина системи (1) -періодична по , безперервна й має безперервні частки похідні по змінним . Тоді відображення за період для системи (1) можна знайти по формулі
і тому рішення
системи (1) буде - періодичним тоді й тільки тоді, коли є рішення недиференціальної системи
(7)
Як наслідок цієї леми доведемо наступне припущення.
Твердження 4 Нехай безупинно диференцюєма функція -періодична й нечетна по , тобто
и. Тоді всяке продовження на відрізок рішення системи (1) буде -періодичним і парним по .
Доказ. Для доказу досить помітити, що функція задовольняє рівнянню (5) й умові (6). Тому вона відповідно до властивості 3) є функцією, що відбиває, розглянутої системи. Рівняння (7) в нашім випадку вироджується в тотожність, і йому задовольняє кожне , для якого визначене значення
Відповідно до основної леми будь-яке рішення системи (1) буде -періодичним. Парність довільного рішення системи (1) треба з тотожностей
справедливих у силу властивості 1) функції, що відбиває.
Справедливі наступні твердження [4].
Теорема 5 Нехай всі рішення системи (1) -періодичні й однозначно визначаються своїми початковими даними. Тоді, що відбиває функція, цієї системи -періодична по
Теорема 6 Нехай система (1) -періодична по а її рішення однозначно визначаються своїми початковими даними й існують при всіх Якщо, крім того, що відбиває функція цієї системи -періодична по те всі рішення системи (1) періодичні з періодом
Аналогічна теорема має місце в тому випадку, коли не всі рішення системи (1) продовжимі на відрізок При цьому висновок про -періодичність можна зробити лише для тих рішень, які існують при всіх
З -періодичності функції, що відбиває, треба -періодичність всіх продовжимих на рішення періодичної (1)системи . З -періодичності функції, що відбиває, не треба, загалом кажучи, -періодичність рішень -періодичної системи, хоча треба їх -періодичність.
Не слід думати, що якщо всі рішення -періодичної системи -періодичні, те її функція, що відбиває, зобов'язана бути -періодичної. Цьому суперечить приклад рівняння
У випадку, коли , тобто коли система (1) вироджується в рівняння, вірна
Теорема 7 Нехай рівняння (1) -періодичне по а його рішення однозначно визначаються своїми початковими даними й існують при всіх Тоді для того, щоб всі рішення рівняння (1) були -періодичні, необхідна й достатня -періодичність по функції, що відбиває, цього рівняння.
... Дотримання цих умов обов’язкове для покупця жінки. Спробуємо тепер перевірити правильність наших висновків. Звернемося до історії, оскільки вона зберегла до нас дані щодо правового становища заміжньої жінки, заснованого в стародавності на викраденні, давнині, купівлі й інших способах. Найдавніша історія скупа у своїх свідченнях. Дещо зберегла вона для нас із глибокої давнини. Але і це дещо часто ...
... життя, світогляд, менталітет, національний характер та ідеологію людини. Відповідно, мова є способом пізнання, з допомогою якого людина пізнає світ та культуру, а ситуація є засобом формування соціолінгвістичної та соціокультурної компетенції мовця. В процесі дослідження було встановлено, комунікативна компетенція є явищем комплексним і включає в себе багато різних видів компетенцій, серед яких ...
... Республіка (ПАР), найбільш економічно розвинена держава Африки. Основними галузями господарства регіону є сільське господарство та обробна промисловість. Розділ 3 МЕТОДИКА ВИВЧЕННЯ КРАЇН АФРИКИ 3.1. Поурочне планування підрозділу У відповідності до Програми з країнознавства для профільного навчання тема «Африка» вивчається у Розділі І − «Регіони і країни світу», який складає ...
... стимулювати учнів до нових зусиль у роботі, до самостійного переборення труднощів – це істотна ознака майстерності вчителя. Розділ 2. Технологія організації самостійної роботи учнів на уроках у початковій школі 2.1 Дидактичні умови організації самостійної роботи молодших школярів Визначаючи дидактико-методичні підходи до організації самостійної роботи учнів, ми враховували творчі надбання ...
0 комментариев