Министерство образования и науки Российской федерации

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Тюменский государственный университет

Институт математики и компьютерных наук

Кафедра информатики и математики

КУРСОВАЯ РАБОТА

По дисциплине «Математический анализ»

на тему:

Дифференцирование в линейных нормированных пространствах

Выполнила: студентка 393 гр.

Жукова И.А.

Проверил: доцент кафедры МиИ

Салтанова Т.В.

Тюмень 2010


Оглавление

Введение

Основные понятия

Сильный дифференциал (дифференциал Фреше)

Слабый дифференциал (дифференциал Гато)

Формула конечных приращений

Связь между слабой и сильной дифференцируемостью

Дифференцируемые функционалы

Абстрактные функции

Интеграл

Производные высших порядков

Дифференциалы высших порядков

Формула Тейлора

Заключение1

Список литературы:


 

Введение

Функциональный анализ — раздел математики, в котором изучаются бесконечномерные пространства и их отображения.

Понятие нормированного пространства – одно из самых основных понятий функционального анализа. Теория нормированных пространств была построена, главным образом, С. Банахом в 20-х годах 20 века. Функциональный анализ за последние два десятилетия настолько разросся, настолько широко и глубоко проник почти во все области математики, что сейчас даже трудно определить самый предмет этой дисциплины. Однако в функциональном анализе есть несколько больших «традиционных» направлений, которые и поныне в значительной степени определяют его лицо. К их числу принадлежит дифференцирование линейных нормированных пространств.


Основные понятия

Определение 1. Непустое множество  называется линейным пространством, если оно удовлетворяет следующим условиям:

Й. Для любых двух элементов  однозначно определен элемент , называемый их суммой, причем

1. (коммутативность)

2. (ассоциативность)

В  существует такой элемент 0, что для всех

4. Для каждого существует такой элемент , что .

II. Для любого числа  и любого элемента  определен элемент , причем

5.

6.

III. Операции сложения и умножения связаны между собой дистрибутивными законами:

7.

8.

Определение 2. Линейное пространство  называется нормированным, если на нем задана неотрицательная функция , называемая нормой, удовлетворяющая условиям:


 

для любого  и любого числа ;

 

для любых  (неравенство треугольника).

Определение 3. Оператором называется отображение

,

где - это линейные пространства.

Определение 4. Оператор  называется линейным, если для любых элементов  и любых чисел R выполняется равенство:

Определение 5. Пусть  - линейные нормированные пространства,

 – линейный оператор,

Линейный оператор непрерывен в точке , если из того, что

 следует, что .

Определение 6. Линейный оператор  непрерывен, если он непрерывен в каждой точке .

Определение 7. Линейный оператор называется ограниченным, если

  

Утверждение. Для линейного нормированного пространства непрерывность линейного оператора равносильна его ограниченности.

Определение8. Наименьшая из констант M таких, что , называется нормой оператора А и обозначается .

В частности, выполняется

Справедливо следующее утверждение: для любого ограниченного линейного оператора

 

Сильный дифференциал (дифференциал Фреше)

Пусть X и У — два нормированных пространства и F — отображение, действующее из X в Y и определенное на некотором открытом подмножестве О пространства X. Мы назовем это отображение дифференцируемым в данной точке, если существует такой ограниченный линейный оператор Lxж (X, Y), что для любого е> 0 можно найти д > 0, при котором из неравенства ||h||< д следует неравенство


|| F(x + h)-F(x)-Lxh ||<е||h|| (1)

То же самое сокращенно записывают так:

А(ч + р)-А(ч)-Дчр = щ(р)ю(2)

Из (I) следует, что дифференцируемое в точке х отображение непрерывно в этой точке. Выражение Lxh (представляющее собой, очевидно, при каждом hX элемент пространства У) называется сильным дифференциалом (или дифференциалом Фреше) отображения F в точке х. Сам линейный оператор Lxназывается производной, точнее, сильной производной отображения F в точке х. Мы будем обозначать эту производную символом F'(x).

Если отображение F дифференцируемо в точке, то соответствующая производная определяется единственным образом. В самом деле, равенство

||L1h — L2h|| = o(h) для операторов

Liж (X, У), i = 1, 2,

возможно, лишь если L1= L2.

Установим теперь некоторые элементарные факты, непоcредственно вытекающие из определения производной.

Если F(x) = y0 = const, то F'(x) = О (т. е. F'(х)

в этом случае есть нулевой оператор).

Производная непрерывного линейного отображения L есть само это отображение:


L '(x)=L (3)

Действительно, по определению имеем

L(x + h)-L(x) = L(h).

3. (Производная сложной функции). Пусть X, У, Z — три нормированных пространства, U(x0)—окрестность точки х0Х, F — отображение этой окрестности в У, у0 = F(x0), V(yo) — окрестность точки у0У и G — отображение этой окрестности в Z. Тогда, если отображение F дифференцируемо в точке хо, a G дифференцируемо в точке уо, то отображение Н = GF (которое определено в некоторой окрестности точки х0) дифференцируемо в точке хо и

H' (x0)=G' (y0)F' (x0) (4)

Действительно, в силу сделанных предположений

А(ч0 +о) = А(ч0) + Аэ (ч0) о +о1 (о ) и

G (уо + з) = G (уо) + G' (уо) з + о2 (з).

Но F'(x0) и G'(yo) — ограниченные линейные операторы. Поэтому

H (х0 + о) = G (уо + F' (x0) о + о1 о ) = G (уо) + G' (у0) (F' (х0) о + +о1 о)) +

2 (F' (x0) о + о1 (о )) = G (у0) + G' (уо) F' (х0) о + о3 (о).

Если F, G и Н — числовые функции, то формула (4) превращается в известное правило дифференцирования сложной функции.

4. Пусть F и G — два непрерывных отображения, действующих из X в Y. Если F и G дифференцируемы в точке х0, то и отображения F + G и aF (а — число) тоже дифференцируемы в этой точке, причем

(F + G)'(х0) = F'(х0) + G'(х0) (5)

(aF)'(x0) = aF'(x0).(6)

Действительно, из определения суммы операторов и произведения оператора на число сразу получаем, что

(F+G)(x0 + h) = F(x0 + h) + G(x0 + h) = F (х0) + G (х0) + F' (х0) h +

+G' (х0) h + o1 (h) и

aF (x0 + h) = aF (x0) + aF' (x0) h + o2 (h),

откуда следуют равенства (5) и (6).

  Слабый дифференциал (дифференциал Гато)

Пусть снова F есть отображение, действующее из X в У. Слабым дифференциалом или дифференциалом Гато отображения F в точке х (при приращении h) называется предел

DF(x,h)=t=0=,

где сходимость понимается как сходимость по норме в пространстве У.

Иногда, следуя Лагранжу, выражение DF(x,h) называют первой вариацией отображения F в точке х.

Слабый дифференциал DF(x,h) может и не быть линеен по h. Если же такая линейность имеет место, т. е. если


DF (х, h) = F'c (х) h,

где F'c (х) — ограниченный линейный оператор, то этот оператор называется слабой производной (или производной Гато).

Заметим, что для слабых производных теорема о дифференцировании сложной функции, вообще говоря, неверна.

Формула конечных приращений

Пусть О — открытое множество в X и пусть отрезок [х0, х] целиком содержится в О. Пусть, наконец, F есть отображение X в У, определенное на О и имеющее слабую производную F'c в каждой точке отрезка [х0, x]. Положив Дх = х — хо и взяв произвольный функционал У*, рассмотрим числовую функцию

f(t) = (F(x0+t Дх)),

определенную при .Эта функция дифференцируема по t. Действительно, в выражении

можно перейти к пределу под знаком непрерывного линейного функционала. В результате получаем

F'(t) =  (F'c(x0+tДx) Дx)


Применив к функции f на отрезке [0, 1] формулу конечных приращений, получим

f(l) = f(0) + f'(и), где 0< и <1,

(F(x)-F(x0))= ( F'c(x0+ и Дx) Дx)(7)

Это равенство имеет место для любого функционала У* (величина и зависит, разумеется, от). Из (7) получаем

|(F(x)-F(x0))||| F'c(x0+ и Дx)|| || Дx|| (8)

Выберем теперь ненулевой функционал  так, что

 (F (х) - F (х0)) = ||||  || F (х) - F (хо) ||

(такой функционал  существует в силу следствия 4 теоремы Хана — Банаха (см. п. 3 § 1 гл. IV)). При этом из (8) получаем

||(F (х) - F (x)|| || F'c(x0+ и Дx)||  ||Дx|| (Дx =x-x0) (9)

Это неравенство можно рассматривать как аналог формулы конечных приращений для числовых функций. Применив формулу (9) к отображению

х —Ю А (х) — Аэс (хо) Дч

получим следующее неравенство:

||F(x-F(хо)-F'c (хо) Дx ||   || F'c(xo+иДx) -F'c(x0) |||| Дx || (10)


 

Связь между слабой и сильной дифференцируемостью

Сильная и слабая дифференцируемость представляют собой различные понятия даже в случае конечномерных пространств. Действительно, из анализа хорошо известно, что для числовой функции

f(x) = f(x1,…,xn)

при n


Информация о работе «Дифференцирование в линейных нормированных пространствах»
Раздел: Математика
Количество знаков с пробелами: 18924
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
29723
0
0

... непрерывных и ограниченных функций – C[], заданный следующим образом: Af(x) = f(x+a). Функции f(x), f(x+a)  C[], a  R, f(x+a) – непрерывная и ограниченная функция. Покажем линейность оператора А, по определению 1 должны выполняться следующие аксиомы : 1) Аксиома аддитивности: А(f+g) = А(f) + А(g). А(f+g) = (f+g)(x+a) = f(x+a) + g(x+a) = А(f) + А(g). По определению суммы функции, аксиома ...

Скачать
33462
0
0

... , называется оператором сдвига, если он каждую последовательность вида (х1,х2,…, хn…) переводит в последовательность вида (0, х1, х2, …, хn…), т.е. выполняется равенство: (х1,х2,…, хn…)=(0, х1, х2, …, хn…). Можно также рассматривать оператор сдвига, который действует в пространстве последовательностей, бесконечных в обе стороны. Элемент этого пространства можно представить в таком виде: (…х-2, ...

Скачать
32868
0
11

... [a,b]. Теперь мы можем рассматривать функции в произвольных нормированных пространствах. III. Методы аппроксимации 3.1 Приближение функций многочленами. Алгебраическим многочленом степени n называется функция - действительные числа, называемые коэффициентами. Алгебраические многочлены являются простейшими функциями. Они непрерывны при любом x. Производная многочлена- так же многочлен, степень ...

Скачать
150656
26
5

... несколько уравнений, а в каждом уравнении - несколько переменных. Задача оценивания параметров такой разветвленной модели решается с помощью сложных и причудливых методов. Однако все они имеют одну и ту же теоретическую основу. Поэтому для получения начального представления о содержании эконометрических методов мы ограничимся в последующих параграфах рассмотрением простой линейной регрессии. ...

0 комментариев


Наверх