Содержание
Введение
§1. Определение линейного оператора. Примеры
§2. Непрерывные линейные операторы в нормированном пространстве. Ограниченность и норма линейного оператора
§3. Обратный оператор. Спектр оператора и резольвента
§4. Оператор умножения на непрерывную функцию
§5. Оператор интегрирования
§6. Оператор дифференцирования
§7. Оператор сдвига
Заключение
Введение
Наиболее доступными для изучения среде операторов, действующих в линейных нормированных пространствах, являются линейные операторы. Они представляют собой достаточно важный класс операторов, так как среди них можно найти операторы алгебры и анализа.
Целью дипломной работы является показать некоторые из линейных операторов, исследовать их на непрерывность и ограниченность, найти норму ограниченного оператора, а также спектр оператора и его резольвенту.
В первом и втором параграфах приведены основные сведения теории операторов: определение линейного оператора, непрерывности и ограниченности линейного оператора, его нормы. Рассмотрены некоторые примеры.
В третьем параграфе даны определения обратного оператора, спектра оператора и его резольвенты. Рассмотрены примеры.
В четвертом параграфе исследуется оператор умножения на непрерывную функцию: Ах(t) = g(t)x(t).
В пятом параграфе приведен пример оператора интегрирования Аf(t)=.
В седьмом параграфе исследуется оператор сдвига Af(x) = f(x+a).
Показана линейность, непрерывность, ограниченность, найдена норма, точки спектра и резольвента всех трех операторов.
В шестом параграфе исследуется оператор дифференцирования Дf(x)=f/(x), в пространстве дифференцируемых функции D[a, b]. Показана его линейность. Доказано, что Д не является непрерывным оператором, а также как из неограниченности оператора следует его разрывность.
§1. Определение линейного оператора. Примеры
Определение 1. Пусть Ex и Ey [1]– линейные пространства над полем комплексных (или действительных) чисел. Отображение А: Ex ® Ey называется линейным оператором, если для любых элементов х1 и х2 пространства Ex и любого комплексного (действительного) числа выполняются следующие равенства [2]:
1. А(х1+х2) = Ах1 + Ах2;
2. А(х) =
А(х);
Примеры линейных операторов:
1) Пусть Е = Е1 – линейное топологическое пространство. Оператор А задан формулой:
Ax = x для всех x Е.
Такой оператор, переводящий каждый элемент пространства в себя является линейным и называется единичным оператором.
2) Рассмотрим D[a,b] – пространство дифференцируемых функций, оператор дифференцирования Д в пространстве D[a,b] задан формулой:
Дf(x) = f/(x).
Где f(x) D[a, b], f/(x)
C[a, b].
Оператор Д определен не на всем пространстве C[a, b], а лишь на множестве функций имеющих непрерывную производную. Его линейность, очевидно, следует из свойств производной.
3) Рассмотрим пространство С[-, +
] – пространство непрерывных и ограниченных функций, оператор А сдвигает функцию на const a:
Аf(x) = f(x+a).
Проверим линейность оператора А:
1) А(f+g) = (f+g)(x+a) = f(x+a) + g(x+a) = А(f) + А(g).
Исходя из определения суммы функции, аксиома аддитивности выполняется.
2) A(kf(x)) = kf(x+a) = kA(f(x)).
Верна аксиома однородности.
Можно сделать вывод, что А – линейный оператор.
4) Пусть (пространство непрерывных функций на отрезке [0,1], и дано отображение
1, заданное формулой:
Так как интеграл с переменным верхним пределом от непрерывной функции является функцией дифференцируемой, а, следовательно, непрерывной, то . В силу линейности определенного интеграла данное отображение является линейным оператором.
§2. Непрерывные линейные операторы в нормированном
пространстве. Ограниченность и норма линейного оператора
Пусть ,
– нормированные пространства.
Определение 2 .Оператор А: Е Е1 называется непрерывным в точке
, если какова бы не была последовательность xn
x0, А(xn) сходится к А(x0). То есть, при p (xn, x0)
0, p (А(xn), А(x0))
0.
Известно и другое (равносильное) определение непрерывности линейного оператора.
Определение 3. Отображение А называется непрерывным в точке x0, если какова бы не была окрестность[3] U точки y0 = А (x0) можно указать окрестность V точки x0 такую, что А(V) U.
Иначе >0
>0, что как только p (x, x0) <
, p (f(x), f(x0)) <
.
Теорема 1.
Если линейный оператор непрерывен в точке х0 = 0, то он непрерывен и в любой другой точке этого пространства.
Доказательство. Линейный оператор А непрерывен в точке х0=0 тогда и только тогда, когда . Пусть оператор А непрерывен в точке х0=0. Возьмем последовательность точек пространства хn®х1, тогда хn–х1®0, отсюда А(хn–х1)®А(0)=0, т. е. А(хn–х1)®0.
Так как А – это линейный оператор, то А(хn–х1)®Ахn–Ах0, а тогда
Ахn-Ах0 ® 0, или Ахn®Ах0.
Таким образом, из того, что линейный оператор А непрерывен в точке х0=0, следует непрерывность в любой другой точке пространства.
т. д-на.
Пример.
Пусть задано отображение F(y) = y(1) пространства С[0, 1] в R. Проверим, является ли это отображение непрерывным.
Решение.
Пусть y(x) – произвольный элемент пространства С[0, 1] и yn(x) – произвольная сходящаяся к нему последовательность. Это означает:
p (yn, y) =
|yn(x)- y(x))| = 0.
Рассмотрим последовательность образов: F(yn) = yn(1).
Расстояние в R определено следующим образом:
p (F(yn), F(y)) = |F(yn) - F(y))| = | yn(1) - y(1)|
|yn(x)- y(x))|=p(yn,y),
то есть p (F(yn), F(y)) 0.
Таким образом, F непрерывно в любой точке пространства С[a, b], то есть непрерывно на всем пространстве.
С понятием непрерывности линейного оператора тесно связано понятие ограниченности.
Определение 4. Линейный оператор А: Е Е1 называется ограниченным, если можно указать число K>0 такое, что
||Аx|| K||x||. (1)
Теорема 2.
Среди всех констант K, удовлетворяющих (1), имеется наименьшее.
Доказательство:
Пусть множество S – множество всех констант K, удовлетворяющих (1), будучи ограниченным снизу (числом 0), имеет нижнюю грань k. Достаточно показать, что k S.
По свойству нижней грани в S можно указать последовательность (kn), сходящуюся к k. Так как kn S, то выполняется неравенство: |А(x)|
kn||x||, (x
E). Переходя в этом неравенстве к пределу
получаем |А(x)| k||x||, где (x
E), (k
S).
т. д-на.
Определение 5. Наименьшая из этих констант K, для которых выполняется неравенство (1), называется нормой оператора А и обозначается ||A||[4].
||А|| K, для
K, подходящего для (1), то есть |А(x)|
||А||||x||, где
||А|| = x
E.
Между ограниченностью и непрерывностью линейного оператора существует тесная связь, а именно справедлива следующая теорема.
Теорема 3.
Для того, чтобы линейный оператор А действующий из Ex в Ey был ограничен, необходимо и достаточно, чтобы оператор А был непрерывен.
Необходимость:
Дано: А – ограничен;
Доказать: А – непрерывен;
Доказательство:
Используя теорему 1 достаточно доказать непрерывность А в нуле.
Дано, что ||Аx|| K||x||.
Докажем, что А непрерывен в нуле, для этого должно выполняться >0,
>0 что ||x||<
||Ax|| <
.
Выберем так, чтобы K*||x|| <
, ||x|| <
, (К>0), значит
=
, тогда если ||x||<
, то ||Аx||
K||x|| < K
=
Непрерывность в нуле доказана, следовательно доказана непрерывность в точке.
Достаточность:
Дано: А – непрерывен;
Доказать А – ограничен;
Доказательство:
Допустим, что А не ограничен. Это значит, что числу 1 найдется хотя бы один соответственный вектор x1 такой, что ||A x1|| > 1|| x1||.
Числу 2 найдется вектор x2, что ||A x2|| > 2|| x2|| и т.д.
Числу n найдется вектор xn, что ||A xn|| > n|| xn||.
Теперь рассмотрим последовательность векторов yn = , где
||yn|| = .
Следовательно последовательность yn 0 при n
.
Так как оператор А непрерывен в нуле, то Аyn 0, однако
||Аyn || = ||A|| =
||Axn ||
> n|| xn||
= 1, получаем противоречие с Аyn
0, то есть А – ограничен
Для линейных операторов ограниченность и непрерывность оператора эквивалентны.
Примеры.
1) Покажем, что норма функционала[5] F(y) = в C[a, b], где p(x) – непрерывная на [a,b] функция, равна
.
По определению 5: ||F|| = |F(x)| =
|
|.
||
|
| = |
y(x)||
|
|y(x)||
|;
||F|| = (
|y(x)||
|) =
||y(x)|||
| = |
|
.
Таким образом, норма F(y) = будет ||F|| =
;
2) Найдем норму функционала, определенного на C[0, 2], где p(x)=(x-1)
F(y) = .
По выше доказанному ||F|| = = 1.
§3. Обратный оператор. Спектр оператора и резольвента
Пусть ,
– нормированные пространства,
– линейный оператор, DA- область определения оператора, а RA – область значений.
Определение 6. Оператор А называется обратимым, если для любого элемента у, принадлежащего RA, уравнение Ах=у имеет единственное решение.
Если оператор А обратим, то каждому элементу у, принадлежащему RA, можно поставить в соответствие единственный элемент х, принадлежащий DA и являющийся решением уравнения Ах=у. Оператор, осуществляющий это соответствие, называется обратным оператором к оператору А и обозначается А-1.
Теорема 4.
Для того чтобы линейный оператор имел ограниченный обратный оператор необходимо и достаточно, чтобы выполнялось неравенство:
, (m>0).
Доказательство:
Достаточность.
Пусть выполняется данное неравенство. Тогда равенство Ax=0 возможно лишь тогда, когда x – нулевой вектор. Получим 0 m*||x||, отсюда ||x||
0, но так как норма не может быть <0, то x=0. А обращается в ноль лишь на нулевом векторе. Итак, А-1 существует.
Докажем его ограниченность.
y=Ax.
x=A-1y, норма ||A-1y||=||x||, но ||x||
||Ax||=
||y||.
Отсюда ||A-1y||
||y||, то есть обратный оператор существует и он ограничен.
Если за m возьмем наибольшую из возможных, то получим, что ||A-1||=.
Необходимость.
Пусть от А имеется ограниченный обратный А-1 на нормированном пространстве.
Итак, ||A-1y|| М||y||.
Подставляем значение y и значение A-1y,получим ||x|| M||Ax|| (М всегда можно считать положительным числом).
Отсюда ||Ax||
||x||.
Положим =m, получим ||Ax||
m||x||.
т. д-на.
В теории операторов важную роль играет понятие спектра оператора. Рассмотрим это понятие сначала для конечномерного пространства.
Определение 7. Пусть А – линейный оператор в n-мерном пространстве Еn. Число λ называется собственным значением оператора А, если уравнение Ах=λх имеет ненулевые решения. Совокупность всех собственных значений называется спектром оператора А, а все остальные значения λ – регулярными. Иначе говоря, λ есть регулярная точка, если оператор , где I – единичный оператор, обратим, При этом оператор (А – λI)-1, как и всякий оператор в конечномерном пространстве, ограничен. Итак, в конечномерном пространстве существуют две возможности:
1) уравнение Ах=λх имеет ненулевое решение, то есть λ является собственным значением для оператора А; оператор (А – λI)-1 при этом не существует;
2) существует ограниченный оператор (А – λI)-1, то есть λ есть регулярная точка.
В бесконечном пространстве имеется еще и третья возможность, а именно:
3) оператор (А – λI)-1 существует, то есть уравнение Ах=λх имеет лишь нулевое решение, но этот оператор не ограничен.
Введем следующую терминологию. Число λ мы назовем регулярным для оператора А, действующего в линейном нормированном пространстве Е, если оператор (А – λI)-1, называемый резольвентой оператора А, определен на всем пространстве Е и непрерывен. Совокупность всех остальных значений λ называется спектром оператора А. Спектру принадлежат все собственные значения оператора А, так как, если (А – λI)х=0 при некотором х≠0, то оператор (А – λI)-1 не существует. Их совокупность называется точечным спектром. Остальная часть спектра, то есть совокупность тех λ, для которых (А – λI)-1 существует, но не непрерывен, называется непрерывным спектром. Итак, каждое значение λ является для оператора А или регулярным, или собственным значением, или точкой непрерывного спектра. Возможность наличия у оператора непрерывного спектра – существенное отличие теории операторов в бесконечномерном пространстве от конечномерного случая.
Определение 8. Оператор , где
– регулярная точка оператора А, называется резольвентой[6] оператора А и обозначается
(или
).
Теорема 5. Пусть – линейный непрерывный оператор,
его регулярные числа. Тогда
.
Доказательство. Умножим обе части равенства на :
(
=
=
. С другой стороны получим
. Так как числа
– регулярные для оператора А, то оператор
имеет обратный. Значит, из равенства
следует, что
. Значит, утверждение теоремы верно.
т. д-на.
Примеры.
1) Рассмотрим в пространстве C[0,1] оператор умножения на независимую переменную t: Ax = tx(t).
Уравнение Аx=x принимает в этом случае вид:
tx(t) - x(t) = y(t),
решение x(t) этого уравнения есть функция, тождественно ему удовлетворяющая.
Если лежит вне отрезка [0, 1], то уравнение Аx=
x имеет при любом y(t) единственное непрерывное решение:
x(t) = y(t),
откуда следует, что все такие значения параметра являются регулярными, и резольвента есть оператор умножения на
:
R(y) =
y(t).
Все значения параметра, принадлежащие отрезку[0, 1], являются точками спектра. В самом деле, пусть 0
[0, 1]. Возьмем в качестве y(t) какую-нибудь функцию, не обращающуюся в нуль в точке
0, y(
0) = a
0. Для такой функции равенство (t -
0)x(t) = y(t), не может тождественно удовлетворяться ни при какой непрерывной на отрезке [0, 1] функции x(t), ибо в точке t =
0 левая часть его равна нулю, в то время как правая отлична от нуля. Следовательно, при
=
0 уравнение Аx=
x не имеет решения для произвольной правой части, что и доказывает принадлежность
0 спектру оператора A. Вместе с тем ни одна точка спектра не является собственным значением, так как решение однородного уравнения (t -
)x(t) = 0,
[0, 1], при любом t, отличном от
, а следовательно, в силу непрерывности и при t =
, обращается в нуль, т.е. тождественно равно нулю.
2) Пусть оператор А действующий из Е Е, задается матрицей А=
.
Аx = =
.
Введем обозначения:
= y1
= y2
x1, x2, y1, y2 E;
A - *I =
, найдем определитель A -
*I:
D(A - *I) =
= (2-
)*(-2-
) – 3 =
2 – 7;
Если определитель отличен от нуля, то есть если не есть корень уравнения
2 – 7 = 0, следовательно, все такие значения параметра
регулярные.
Корни уравнения 2 – 7 = 0 образуют спектр:
1 =
;
2 = -
;
1,
2 – собственные значения.
Найдем собственные векторы для собственных значений :
при =
получаем:
откуда x1 = (2+)x2; 1-й собственный вектор: ((2+
)x, x);
при = -
получаем:
откуда x1 = (2 - )x2 ; 2-й собственный вектор: ((2 -
)x, x);
§4. Оператор умножения на непрерывную функцию
Рассмотрим пространство непрерывных на отрезке
функций, и оператор А, заданный формулой:
Ах(t) = g(t) x(t).
g(t) - функция, непрерывная на [a, b]; a,bR.
Проверим является ли оператора А линейным, то есть, по определению 1, должны выполняться аксиомы аддитивности и однородности.
1) Аксиома аддитивности: A(f+g) = A(f) + A(g).
A(f+g) = (g(t)+f(t))x(t) = g(t)x(t)+f(t)x(t) = A(f) + A(g).
2) Аксиома однородности: A(k*f) = k*A(f).
A(k*f) = A(k*x(t)) = k*g(t)x(t) = kA(x(t)) = k*A(f).
По средствам арифметических операции над функциями, аксиомы аддитивность и однородность выполняются. Оператор А является линейным по определению.
3) Проверим, является ли А непрерывным, для этого воспользуемся определением непрерывности:
p (fn(x), f0(x)) 0
p (A fn(x), Af0(x))
0.
Оператор А, действует в пространстве C[], в котором расстояние между функциями определяется следующим образом:
p (fn(x), f0(x)) = | fn(x) - f0(x)|.
Решение:
p (A xn(t), Ax0(t)) = |Axn(t) - Ax0(t)| =
|xn(t)g(t) - x0(t)g(t)|
|g(t)|
|xn(t) - x0(t)| =
|g(t)|p (xn(t), x0(t))
0.
Итак, p (A xn(t), Ax0(t))
... понятия собственного числа линейного оператора А. 120. Определите, каким является базис а=(1/, 1/,1/), b=(1/, -1/, 0), с =(1/, 1/,-2/). Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету ЛИНЕЙНАЯ АЛГЕБРА Билет № 26 121. Приведение матрицы к ступенчатому виду методом Гаусса. Пример. 122. ...
... и1 и и2, соответствующие различным собственным значениям λ1 и λ2, ортогональны. Действительно, из соотношений Lu1 = λ1 и1, Lu2 = λ2и2, из вещественности λ1 и λ2 и из эрмитовости оператора L получаем цепочку равенств λ1(и1,и2) = (λ и1,и2) = (Lи1,и2) = (и1,Lu2) = (и1,λ2и2) = =λ2(и1,и2), т.е. λ1(и1,и2) = λ2(и1,и2). Отсюда, ...
... , называется оператором сдвига, если он каждую последовательность вида (х1,х2,…, хn…) переводит в последовательность вида (0, х1, х2, …, хn…), т.е. выполняется равенство: (х1,х2,…, хn…)=(0, х1, х2, …, хn…). Можно также рассматривать оператор сдвига, который действует в пространстве последовательностей, бесконечных в обе стороны. Элемент этого пространства можно представить в таком виде: (…х-2, ...
... состоит из значений функции g(x) на отрезке [a,b]. Причём этот оператор имеет лишь непрерывный спектр, так как резольвента при существует, но не непрерывна. Точечного спектра оператор не имеет. Пример 3: Рассмотрим оператор дифференцирования на множестве дифференцируемых функций. А: (для краткости будем писать вместо f(x) просто f). Рассмотрим резольвенту этого оператора: , то есть мы должны ...
0 комментариев