8. Вычисление проекторов матрицы

Проекторы матрицы можно также вычислить, воспользовавшись интерполяционным многочленом Лагранжа с матричным аргументом:

По известному спектру  проекторы матрицы можно найти и методом неопределенных коэффициентов. Для чего выбирают такие функции от матрицы A, которые вычисляются очевидным образом, например, такие:

Записывая разложение для каждой функции, получим следующую систему линейных уравнений относительно проекторов:

В случае, когда в спектре матрицы имеются кратные собственные значения, вычисление проекторов осуществляется по интерполяционным формулам Лагранжа, учитывающим еще и заданные значения производных в отдельных точках. Разложение матричной функции по значениям ее на спектре в этом случае имеет вид:


где  – значения i-тых произ-водных функции в точках, соответствующих различным (не кратным) корням характеристического многочлена,

 – число кратных корней ,

 – проекторы кратных корней, в выражении которых содержатся

 – проекторы различных корней.

9. Пример использования числовых характеристик матриц

Знание собственных значений матрицы и ее проекторов позволяет выполнять вычисления аналитических функций получающихся, например, при решениях систем линейных дифференциальных уравнений, при исследованиях эквивалентных матричных преобразований и пр.

Для примера построим матрицу с заданными собственными значениями  и собственными векторами, основанными на векторах .

Сначала необходимо убедиться в линейной независимости исходных векторов и добиться того, чтобы левые и правые одноименные собственные векторы оказались ортогональными, т.е. . Проверка линейной независимости может быть объединена с процессом ортогонализации заданной системы векторов методом Грама-Шмидта.

Для заданных векторов построим систему векторов  таких, что , следующим образом:

Откуда последовательно находятся коэффициенты :

Взаимной ортогональности векторов v можно было бы добиваться и так, чтобы каждый  был ортогонален каждому , положив  и приравняв нулю скалярные произведения :

Определитель этой системы называют определителем Грама:


,

где - матрица, в общем случае комплексно сопряженная с матрицей

, составленной из заданных векторов.

Если грамиан положителен, а он всегда неотрицателен, то векторы  линейно независимы, а если равен нулю, то зависимы. Это один из способов проверки конкретного набора векторов на их линейную независимость.

Для заданного выше набора векторов  определитель произведения матрицы X на транспонированную X* будет равен

Таким образом, заданная система векторов линейно независима. Для построения ортонормированной системы векторов последовательно вычислим коэффициенты и ортогональные векторы:

После нормирования векторы образуют правую систему собственных векторов. Транспонированная Т-матрица с этими векторами есть -матрица (); ее строки являются собственными левосторонними векторами:

.


Внешнее (матричное) произведение каждого нормированного вектора  самого на себя дает нам проекторы искомой матрицы:

Умножая каждое собственное значение  из заданного набора на свой проектор и суммируя, получим:

.

Аналогично получается обратная матрица:

.

С помощью этих же проекторов вычисляется любая аналитическая функция, аргументом которой является матрица A:

.


Информация о работе «Линейные системы уравнений»
Раздел: Математика
Количество знаков с пробелами: 21092
Количество таблиц: 0
Количество изображений: 9

Похожие работы

Скачать
7857
3
7

в первом столбце. Матрице  соответствует множество решений системы линейных уравнений Ответ: получили решение:   Задача 2   Даны координаты вершин треугольника АВС Найти: 1) длину стороны АВ; 2) уравнения сторон АВ и ВС и их угловые коэффициенты; 3) внутренний угол при вершине В в радианах с точностью до 0,01 4) уравнение медианы АЕ; 5) уравнение и длину высоты CD; 6) ...

Скачать
10018
0
5

... решение линейного интегрального уравнения составим алгоритм. Представим алгоритм в виде блок-схемы. y[i]=B[i,m];   Используя данную блок-схему, напишем соответствующую функцию. Функция решения линейных интегральных уравнений будет реализована на С++. bool solvefredholm2(const double& a, const double& b, const int& n, ap::real_1d_array& y, ...

Скачать
22411
1
13

... шаг интегрирования ; tp – время интегрирования трех точечным методом прогноза и коррекции , ta – время интегрирования по методу Адамса-Башфорта , NU – массив начальных условий . Данная процедура способна производить решения систем линейных дифференциальных уравнений произвольного размера , на произвольном промежутке времени интегрирования . Вычисленные данные записываются в файлы prandcom*.df . ...

Скачать
30711
0
1

... понятия собственного числа линейного оператора А. 120.            Определите, каким является базис а=(1/, 1/,1/), b=(1/, -1/, 0), с =(1/, 1/,-2/). Зав. кафедрой --------------------------------------------------   Экзаменационный билет по предмету ЛИНЕЙНАЯ АЛГЕБРА Билет № 26 121.            Приведение матрицы к ступенчатому виду методом Гаусса. Пример. 122.            ...

0 комментариев


Наверх