Дослідження факторів, що впливають на роботу НПК і енергоблоку

Перспектива збільшення економічності Зуєвської теплової електростанції за допомогою вибору оптимального режиму роботи енергоблоку
Загальний опис підприємства Турбіна ДО-300-240 Харківського турбінного заводу Електричні фільтри Характеристика й розрахунок проектної теплової схеми блоку 300 МВт Зуєвської ТЕС Складання таблиці параметрів пари, живильної води й основного конденсату Розрахунок підігрівників високого тиску й турбопривода Розрахунок теплофікаційної установки Визначення початкових параметрів пари Підігрів живильної води й основного конденсату в системі регенерації Відомості балансу по витраті пари й потужності Визначення оптимальних строків чищення поверхонь теплообміну конденсаторів парових турбін Висновки про необхідність заміни латунних трубок на трубки марки МНЖ-5-1 Дослідження факторів, що впливають на роботу НПК і енергоблоку Профілактично - оперативна діагностика Попередження відмов у роботі обладнання НПК Розробка системи технічного діагностування НПК Система технічної діагностики низькопотенційного комплексу Практична цінність проведеного дослідження Види й способи усунення забруднень у трубках конденсатора Експериментальні хімічні очищення Система кулькового очищення конденсатора Визначення часток пари, витрати й потужностей потоку Висновки з розрахунків теплових схем Розрахунок викидів оксиду сірки Розрахунок викидів парникових газів Розрахунок витрат на електроенергію на власні потреби Розрахунок витрат на інші витрати Охорона праці й навколишнього середовища Огородження робочого місця й вивішування попереджувальних плакатів
174100
знаков
29
таблиц
15
изображений

4.3 Дослідження факторів, що впливають на роботу НПК і енергоблоку.

 

4.3.1 Вплив зміни кінцевого тиску на роботу турбіни

Тиск за останнім щаблем може змінюватися в досить широких межах за рахунок зміни парового навантаження, забруднення трубок конденсатора, погіршення повітряної щільності вакуумної системи, зміни кількості й температури охолодної води й внаслідок інших причин, що впливають на режими роботи конденсаційної установки, що приводить до зміни потужності турбіни, а, отже, і блоку в цілому. Для більшості турбін середніх параметрів зміна тиску в конденсаторі на ±0,98*10-3 МПа приводить для всіх навантажень до зміни потужності приблизно на ± 1% номінальній потужності.

При підвищенні тиску в конденсаторі тепловий перепад на турбіну зменшується, причому це зменшення перепаду доводиться на кілька останніх щаблів. Напруги в цих щаблях зменшуються, зате збільшуються ступені реактивності. При невеликому збільшенні протитиску зміна реактивності не може викликати значного збільшення осьового зусилля. При роботі ж з різко погіршеним вакуумом можуть виникнути побоювання за надійність завзятого підшипника турбіни. Поряд із цим при значному погіршенні вакууму збільшується температура вихлопного патрубка турбіни, що може викликати расцентровку агрегату й поява неприпустимої вібрації.[18,29]

4.3.2 Повітряна щільність конденсатора

Одним із джерел зниження вакууму в конденсаторі - збільшення кількості повітря.

Повітря й інші гази, що не конденсуються, попадають у конденсатор двома шляхами: з пором і через нещільності вакуумної системи турбіни. Кількість газів, що не конденсуються, вступників у конденсатор з пором, невелике й становить величину порядку декількох відсотків від загальної кількості, що видаляє з конденсатора повітря. Таким чином, основна кількість газів, що видаляє з конденсатора, становить повітря, що проникає через нещільності елементів турбоустановки, що перебувають під розрідженням.

При значному зниженні парового навантаження величина присоса повітря, як правило, збільшується, оскільки під розрідженням виявляються всі нові ділянки корпуса турбіни й регенеративної системи.[36]

Проникнення повітря у вакуумну систему турбіни погіршує роботу конденсатора, викликаючи цілий ряд небажаних явищ. Насамперед повітря істотно погіршує коефіцієнт тепловіддачі від пари, що конденсується, до стінки конденсаторних трубок, зменшуючи тим самим загальний коефіцієнт теплопередачі в конденсаторі. Значні присоси повітря можуть викликати перевантаження пристроїв і погіршення вакууму із цієї причини.[23]

4.3.3 Переохолодження й киснєзміст конденсату

Переохолодженням конденсату називається різниця між температурою насичення пари при тиску в горловині конденсатора й температурою конденсату в усмоктувальному патрубку конденсатного насоса.

Переохолодження конденсату погіршує економічність установки, оскільки збільшується втрата тепла з охолодною водою й виникає необхідність у додатковому підігріві живильної води за рахунок пари з регенеративних відборів. Переохолодження конденсату погіршує деаерацію конденсату в конденсаторі, що може з'явитися причиною значного заряджання живильної води корозійно-активними газами.[36]

Підвищення змісту кисню в конденсаторі збільшує корозію водяного тракту від конденсатора до деаераційної установки. Киснева корозія конструктивний металів живильного тракту, крім руйнування металу, викликає замет поверхонь нагрівання казана й проточної частини турбіни окислами заліза, міді й ін. сполуками, що серйозно ускладнює експлуатацію основного встаткування й у ряді випадків приводить до аварійних положень. Джерелами зараження конденсату киснем можуть бути нещільності зварених сполук конденсатозбірника, у фланцевих сполуках конденсатотпроводів, у чепцевих ущільненнях насосів і вакуумних засувок, корпусів насосів, що перебувають під розрядженням.[29]

 

4.3.4 Забруднення конденсатора

Із усього різноманіття проблем, що виникають у процесі експлуатації конденсаторів одна з основних - відкладення на стінках трубок трубного пучка, що утворяться в процесі руху по них охолодної води.

Забруднення конденсаторів з водяної сторони є найбільш частою причиною погіршення вакууму.

Забруднення трубок конденсаторів, особливо відкладення на їхній внутрішній поверхні, омиваною охолодною водою, а також забивання трубних дощок і трубок з боку входу води більшими предметами приводять до погіршення теплотехнічних показників роботи конденсаторів - коефіцієнта теплопередачі, температурного напору й тиску пари, що відробило, у порівнянні з їхніми значеннями для відповідних режимних умов по нормативних характеристиках.

Характер і інтенсивність забруднення внутрішньої поверхні конденсаторних труб і пов'язані із цим порушення їхньої роботи залежать від багатьох факторів, до яких ставиться фізико-хімічна сполука охолодної води, її біологічні особливості, конструкція конденсатора й режим його роботи (швидкість руху води в трубках, температурний перепад і т.д.) і корозійна стійкість конденсаторних труб. Можливо випадкове влучення сторонніх предметів, а також змивання й віднесення з потоком охолодної води елементів конструкцій на циркуляційних насосів після обертових сіток [23].

За своїм характером забруднення можуть бути розбиті на три групи: а) механічні; б) біологічні; в) сольові.

Механічні й біологічні забруднення охолодних трубок і трубних дощок конденсатора приводять до:

–  повільному або застійному плину охолодної води в трубках через їхнє часткове забивання;

–  руйнуванню захисного окісного шару з наступною крапковою корозією мідних сплавів;

–  підвищенню місцевої швидкості води на ділянці, де застрягли великі частки, з виникненням швидко прогресуючої ерозії мідних сплавів;

–  виразкової корозії трубних дощок через волокнисті забруднення, трави;

–  зменшенню охолодної поверхні конденсатора через повне забивання охолодних трубок;

–  збільшенню втрати тиску в конденсаторі через забивання, що прохолоджують трубок.

Наслідку сольових забруднень охолодних трубок проявляються в основному в:

-  прискорення корозії трубок;

-  зменшенні прохідного перетину трубок, що веде до скорочення витрати охолодної води й підвищенню втрати тиску у водяному тракті конденсатора ;

-  погіршення теплообміну.[29]


Информация о работе «Перспектива збільшення економічності Зуєвської теплової електростанції за допомогою вибору оптимального режиму роботи енергоблоку»
Раздел: Физика
Количество знаков с пробелами: 174100
Количество таблиц: 29
Количество изображений: 15

0 комментариев


Наверх