КОСТРОМСКОЙ ФИЛИАЛ ВОЕННОГО УНИВЕРСИТЕТА РХБ ЗАЩИТЫ
Кафедра «Автоматизации управления войсками»
Только для преподавателей
"Утверждаю"
Начальник кафедры № 9
полковник ЯКОВЛЕВ А.Б.
«____»______________ 2004 г.
доцент А.И.СМИРНОВА
"ОПРЕДЕЛИТЕЛИ.
РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ"
ЛЕКЦИЯ № 2 / 1
Обсуждено на заседании кафедры № 9
«____»___________ 2004г.
Протокол № ___________
Кострома, 2004.
Содержание
Введение
1. Определители второго и третьего порядка.
2. Свойства определителей. Теорема разложения.
3. Теорема Крамера.
Заключение
1. В.Е. Шнейдер и др., Краткий курс высшей математики, том I, гл. 2, п.1.
2. В.С. Щипачев, Высшая математика, гл.10, п.2.ВВЕДЕНИЕ
На лекции рассматриваются определители второго и третьего порядков, их свойства. А также теорема Крамера, позволяющая решать системы линейных уравнений с помощью определителей. Определители используются также в дальнейшем в теме "Векторная алгебра" при вычислении векторного произведения векторов.
1-ый учебный вопрос ОПРЕДЕЛИТЕЛИ ВТОРОГО И ТРЕТЬЕГО
ПОРЯДКА
Рассмотрим таблицу из четырех чисел вида
Числа в таблице обозначены буквой с двумя индексами. Первый индекс указывает номер строки, второй – номер столбца.
ОПРЕДЕЛЕНИЕ 1. Определителем второго порядка называют выражение вида:
(1)
Числа а11, …, а22 называют э л е м е т а м и определителя.
Диагональ, образованная элементами а11; а22 называется г л а в н ой, а диагональ, образованная элементами а12; а21 -п о б о ч н ой.
Таким образом, определитель второго порядка равен разности произведений элементов главной и побочной диагоналей.
Заметим, что в ответе получается число.
ПРИМЕРЫ. Вычислить:
Рассмотрим теперь таблицу из девяти чисел, записанных в три строки и три столбца:
ОПРЕДЕЛЕНИЕ 2. Определителем третьего порядка называется выражение вида:
Элементы а11; а22; а33 – образуют главную диагональ.
Числа а13; а22; а31 – образуют побочную диагональ.
Изобразим, схематически, как образуются слагаемые с плюсом и с минусом:
" + " " – "
С плюсом входят: произведение элементов на главной диагонали, остальные два слагаемых являются произведением элементов, расположенных в вершинах треугольников с основаниями, параллельными главной диагонали.
Слагаемые с минусом образуются по той же схеме относительно побочной диагонали.
Это правило вычисления определителя третьего порядка называют
п р а в и л о м т р е у г о л ь н и к о в.
ПРИМЕРЫ. Вычислить по правилу треугольников:
ЗАМЕЧАНИЕ. Определители называют также д е т е р м и н а н т а м и.
2-ой учебный вопрос СВОЙСТВА ОПРЕДЕЛИТЕЛЕЙ.
ТЕОРЕМА РАЗЛОЖЕНИЯ
Приведенные далее свойства выполняются для определителей любого порядка. Все они могут быть доказаны непосредственной проверкой, основанной на правилах вычисления определителей.
Свойство 1. Величина определителя не изменится, если его строки поменять местами с соответствующими столбцами.
.
Раскрывая оба определителя, убеждаемся в справедливости равенства.
Свойство 1 устанавливает равноправность строк и столбцов определителя. Поэтому все дальнейшие свойства определителя будем формулировать и для строк и для столбцов.
Свойство 2. При перестановке двух строк (или столбцов) определитель изменяет знак на противоположный, сохраняя абсолютную величину.
.
Свойство 3. Общий множитель элементов строки (или столбца) можно выносить за знак определителя.
.
Свойство 4. Если определитель имеет две одинаковые строки (или столбца), то он равен нулю.
Это свойство можно доказать непосредственной проверкой, а можно использовать свойство 2.
Обозначим определитель за D. При перестановке двух одинаковых первой и второй строк он не изменится, а по второму свойству он должен поменять знак, т.е.
D = - D Þ 2 D = 0 Þ D = 0.
Свойство 5. Если все элементы какой–то строки (или столбца) равны нулю, то определитель равен нулю.
Это свойство можно рассматривать как частный случай свойства 3 при
k = 0
Свойство 6. Если элементы двух строк (или столбцов) определителя пропорциональны, то определитель равен нулю.
.
Можно доказать непосредственной проверкой или с использованием свойств 3 и 4.
Свойство 7. Величина определителя не изменится, если к элементам какой-либо строки (или столбца) прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и то же число.
.
Доказывается непосредственной проверкой.
Применение указанных свойств может в ряде случаев облегчить процесс вычисления определителей, особенно третьего порядка.
Для дальнейшего нам понадобится понятия минора и алгебраического дополнения. Рассмотрим эти понятия для определения третьего порядка.
ОПРЕДЕЛЕНИЕ 3. Минором данного элемента определителя третьего порядка называется определитель второго порядка, полученный из данного вычеркиванием строки и столбца, на пересечении которых стоит данный элемент.
Минор элемента аij обозначается Мij . Так для элемента а11 минор
Он получается, если в определителе третьего порядка вычеркнуть первую строку и первый столбец.
ОПРЕДЕЛЕНИЕ 4. Алгебраическим дополнением элемента определителя называют его минор, умноженный на (-1)k , где k - сумма номеров строки и столбца, на пересечении которых стоит данный элемент.
Алгебраическое дополнение элемента аij обозначается Аij.
Таким образом, Аij = .
Выпишем алгебраические дополнения для элементов а11 и а12.
.
.
Полезно запомнить правило: алгебраическое дополнение элемента определителя равно его минору со знаком плюс, если сумма номеров строки и столбца, в которых стоит элемент, четная, и со знаком минус, если эта сумма нечетная.
ПРИМЕР. Найти миноры и алгебраические дополнения для элементов первой строки определителя:
Миноры: | Алгебраические дополнения: |
Ясно, что миноры и алгебраические дополнения могут отличаться только знаком.
Рассмотрим без доказательства важную теорему – теорему разложения определителя.
ТЕОРЕМА РАЗЛОЖЕНИЯ
Определитель равен сумме произведений элементов какой-либо строки или столбца на их алгебраические дополнения.
Используя эту теорему, запишем разложение определителя третьего порядка по первой строке.
.
В развернутом виде:
.
Последнюю формулу можно использовать как основную при вычислении определителя третьего порядка.
Теорема разложения позволяет свести вычисление определителя третьего порядка к вычислению трех определителей второго порядка.
Рекомендуется раскладывать определитель по той строке или столбцу, где есть нули, т.к. для нулевых элементов не надо находить алгебраические дополнения.
Теорема разложения дает второй способ вычисления определителей третьего порядка.
ПРИМЕРЫ. Вычислить определитель, используя теорему разложения.
использовали разложения по второй строке.
Теорема разложения позволяет также вычислять определители более высокого порядка, сводя их к вычислению нескольких определителей третьего или второго порядка.
Так, определитель четвертого порядка можно свести к вычислению четырех определителей третьего порядка.
3-ий учебный вопрос ТЕОРЕМА КРАМЕРА
Применим рассмотренную теорию определителей к решению систем линейных уравнений.
... , с помощью которых в последующем решение систем линейных уравнений станет намного проще, понятнее и быстрее. Цель моей работы заключается в том, чтобы изучить различные способы решения систем линейных уравнений для применения их на практике. Для достижения любой цели необходимо выполнить какие-то определенные задачи. Мне нужно выполнить следующие задачи: исследовать литературу по темам матриц, ...
... . При этом собственно нахождение обратной матрицы – процесс достаточно трудоемкий и его программирование вряд ли можно назвать элементарной задачей. Поэтому на практике чаще применяют численные методы решения систем линейных уравнений. К численным методам решения систем линейных уравнений относят такие как: метод Гаусса, метод Крамера, итеративные методы. В методе Гаусса, например, работают над ...
... , придумать “свой метод", догадаться что-то прибавить и отнять, выделить полный квадрат, на что-то разделить и умножить и т.д. Если работа в поисках более рациональный способ решения систем линейных уравнений с двумя переменными - методом подстановки будет успешна, то практическая значимость будет очевидна. Список использованной литературы 1. Алгебра 8 класс. Н.Я. Виленкин. Москва, ...
... 4.Исходный текст программы Составить программу решения систем линейных алгебраических уравнений с квадратной невырожденной матрицей порядка n методом Гаусса с использованием языка С++ . // Решение системы линейных уравнений методом Гаусса. #include<io.h> #include "stdio.h" #include "conio.h" #include <windows.h> #include <iostream> #include <time.h> #include ...
0 комментариев