6. Всякое конечное множество является малым, всякое множество с конечным
дополнением — большим. (При голосовании мнение конечного числа голосующих несущественно.)
Разбиение всех подмножеств натурального ряда на большие и малые, удовлетворяющее требованиям 1–6, называется нетривиальным ультрафильтром на множестве натуральных чисел.
Покажем теперь, что такое разбиение позволяет построить систему гипердействительных чисел, удовлетворяющую требованиям Основной гипотезы. Итак, пусть фиксировано разбиение, удовлетворяющее требованиям 1–6. Назовем две последовательности xn и yn эквивалентными, если множество тех n, при которых xn =yn является большим. В силу требования 2 всякая последовательность эквивалентна самой себе.
Мы видим, что введенное отношение рефлексивно, симметрично (это очевидно из определения) и транзитивно и, следовательно, разбивает все последовательности действительных чисел на классы эквивалентности, т. е. такие классы, что любые две последовательности одного класса эквивалентны, а любые две последовательности из разных классов – нет. Эти классы мы и назовем гипердействительными числами. Что еще нам нужно? Нужно, чтобы множество действительных чисел было подмножеством множества гипердействительных. Нужно уметь для каждой функции с действительными аргументами и значениями строить ее гипердействительный аналог. Нужно проверить, что любая система уравнений и неравенств, гипердействительный аналог которой имеет гипердействительные решения, имеет действительные решения. И, наконец, нужно убедиться, что среди гипердействительных чисел (рассматриваемых как упорядоченное поле) существуют бесконечно малые, отличные от нуля.
Чтобы сделать R подмножеством *R, отождествим каждое действительное число х с последовательностью х, х, х, ..., точнее, с содержащим ее классом. При этом разным действительным числам соответствуют разные классы: х,x,х … не эквивалентно у,у,y ... (множество тех n, при которых n-е члены совпадают, пусто и, следовательно, является малым).
Пусть f: R®R – функция с действительными аргументами и значениями. Определим ее гипердействительный аналог *f: *R® *R. Пусть x – произвольное гипердействительное число, т.е. класс эквивалентных последовательностей действительных чисел. Рассмотрим произвольную последовательность x0, x1, x2,… из этого класса и применим f ко всем ее членам. Класс, содержащий полученную последоваетльность f(x0), f(x1), f(x2), … и будем считать значением f на х. Полученный класс не зависит от выбора последовательности x0, x1, x2,… в классе x (определение корректно).
Аналогично определяются и гипердействительные аналоги для функций нескольких аргументов. Пусть, например, f – функция двух действительных аргументов с действительными значениями. Определим ее гипердействительный аналог *f. Чтобы применить *f к двум гипердействительным числам х и y, возьмем последовательности x0, x1, x2,… и y0, y1, y2,… , им принадлежащие, и в качестве *f(х, у) рассмотрим класс последовательности f(x0,y0), f(x1,y1), f(x2,y2),… Определение корректно.
Нужно проверить, что построенное гипердействительные аналоги будут продолжениями исходных функций с действительными аргументами и значениями. Это очевидно следует из определений. Проверим теперь, что всякая система уравнений и неравенств, имеющая гипердействительные решения, имеет и действительные решения. Пусть, например, система
f(g(x,y),z)=z, h(x)¹h(y)
имеет гипердействительные решения x, y, z. Рассмотрим последовательности x0,x1,x2,…; y0,y1,y2,…; z0,z1,z2,…, принадлежащие соответствующим классам эквивалентности. Тогда g(x0,y0), g(x1,y1),… принадлежит классу g(x,y), а f(g(x0,y0),z0), f(g(x1,y1),z1),… – классу f(g(x,y),z). Поскольку x,y,z по предположению являются решениями системы, то f(g(xn,yn),zn)=zn для большинства п. Поскольку h(x)¹h(y), последовательности h(x0),h(x1),… и h(y0),h(y1),… не эквивалентны и множество тех п, при котором h(xn)=h(yn) малое. Тогда множество тех п, при котором h(xn)¹h(yn) является большим. Так как пересечение двух больших множеств является большим, то множество тех n, при котором
f(g(xn,yn),zn)=zn, h(xn)¹h(yn)
является большим. Значит, оно непусто. Таким образом, система имеет и действительные решения.
Осталось проверить, что среди гипердействительных чисел существуют бесконечно малые, отличные от нуля. Положительным бесконечно малым гипердействительным числом будет, например, класс последовательности 1, 1/2, 1/3, .,. (или любой другой последовательности положительных действительных чисел, сходящейся к 0). Нам нужно проверить, что это гипердействительное число (обозначим его через e) положительно, но меньше любого стандартного положительного числа. Чтобы доказать это, мы должны вспомнить, как определяется порядок на множестве гипердействительных чисел. Он определяется в соответствии с общей схемой построения гипердействительного аналога для любого отношения на множестве действительных чисел. Нужно взять функцию f двух действительных аргументов, для которой свойства f(x,y)=0 и х<у равносильны, и рассмотреть ее гипердействительный аналог *f. Гипердействительное число х называется меньшим гипердействительного числа у, если *f(x,y)=0. Посмотрим, что дает нам эта конструкция для построенной описанным способом системы гипердействительных чисел. Если х – класс последовательности x0,x1,x2,…, а y – класс последовательности y0,y1,y2,…, то *f(x,y) есть класс последовательности f(x0,y0), f(x1,y1), f(x2,y2), … Равенство этого класса нулю (т. е. классу последовательности 0, 0, 0, ...) означает, что f(xn,yn)=0 для большинства n, т. е. что xn<yn для большинства п. Таким образом, чтобы выяснить, верно ли х<у для гипердействительных чисел х и y, нужно взять последовательности x0,x1,x2,…, и y0,y1,y2,… в классах х и у и выяснить, является ли множество тех п, при которых xn<yn большим.
Нам нужно было проверить, что 0<e и что e<р для любого стандартного положительного р (e —класс последовательности 1, 1/2, 1/3, ...). Это просто:
0<e, так как 0<1/п при всех п (а множество N большое), e<р, так как 1/n<р для всех натуральных n, кроме конечного числа, а всякое множество с конечным дополнением малое (свойство 6 “системы подсчета голосов”). Отметим, что здесь мы впервые воспользовались свойством 6, до сих пор все наши рассуждения были справедливы и в случае “диктатуры” (когда большими считаются те и только те множества, которые содержат некоторое натуральное число N). В этом случае две последовательности эквивалентны, если совпадают их N-е члены, и все гипердействительные числа стандартны (класс последовательности x0,x1,x2,… совпадает со стандартным числом xN).
ЛИТЕРАТУРА1. Успенский В.А. Что такое нестандартный анализ? – М., Наука, 1987. – 128с.
2. Девис М. Прикладной нестандартный анализ. – М., Мир, 1980.
3. Успенский В.А. Нестандартный, или неархимедов, анализ. – М., Знание, 1983. 61 с. (Новое в жизни, науке, технике. Сер. “Математика, кибернетика” № 8 ).
4. Успенский В.А. Нестандартный анализ // Наука и жизнь, 1984. – №1. – с. 45-50.
5. Робинсон А. Введение в теорию моделей и математику алгебры. пер. с англ. – М., Наука, 1967.
... состоит из значений функции g(x) на отрезке [a,b]. Причём этот оператор имеет лишь непрерывный спектр, так как резольвента при существует, но не непрерывна. Точечного спектра оператор не имеет. Пример 3: Рассмотрим оператор дифференцирования на множестве дифференцируемых функций. А: (для краткости будем писать вместо f(x) просто f). Рассмотрим резольвенту этого оператора: , то есть мы должны ...
... «Математических лекциях о методе интеграла»[9]. Здесь дан способ взятия большинства элементарных интегралов и указаны методы решения многих дифференциальных уравнений первого порядка. 2 Вклад Л.Эйлера в развитие математического анализа Леонард Эйлер (Euler, Leonhard) (1707–1783) входит в первую пятерку величайших математиков всех времен и народов. Родился в Базеле (Швейцария) 15 апреля ...
... динамике и соотношениям, которые связывают его с другими управляющими параметрами, характеризующими человеческое общество [7-10 ]. Можно установить непосредственную связь этого параметра с некоторой физической мерой, характеризующей как отдельного человека, так и человечество в целом, которая связывает этот биологический вид со всеми живыми и неживыми объектами природы – этой мерой является масса ...
... у детей. Дети бережнее относится к инвентарю, повышается плотность урока, повышается качество обучения. Так же при использовании такого оборудования происходит влияние на формирование интереса младшего школьного возраста на уроках физической культуры. Происходит удовлетворение интереса, который может укрепляться, развиваться, становиться более глубоким и разносторонним. Интерес, таким образом, ...
0 комментариев