Академия труда и социальных отношений

Курганский филиал

Социально-экономический факультет

КОНТРОЛЬНАЯ РАБОТА

по дисциплине: «Общий курс высшей математики»

Студент гр. ЗМб 1338

Ст. преподаватель

Курган – 2009


Задание 03

В ромбе ABCD известны координаты вершин А и С и тангенс внутреннего угла С. Найти уравнения диагоналей и сторон, координаты двух других вершин, а также площадь этого ромба, если А(4,2), С(16;18), . Сделать чертеж.

Решение:

Зная координаты вершин А и С запишем уравнение диагонали АС как уравнение прямой, проходящей через две заданные точки:

12(y-2)=16(x-4);

12y-24=16х-64

16х-12у-40=0 /:4

4х-3у-10=0 – уравнение диагонали А С в форме общего уравнения прямой.

Перепишем это уравнение в форме уравнения прямой с угловым коэффициентом:

-3y=-10-4х;

3y=4x-10;

y= откуда k А С=

Так как в ромбе диагонали взаимно перпендикулярны, то угловой коэффициент диагонали BD будет равен

КВD =

Само же уравнение диагонали BD найдем как уравнение прямой, проходящей через заданную точку в направлении, определяемом угловым коэффициентом КBD.

В качестве «заданной точки» возьмем точку Е пересечения диагоналей ромба, которая лежит на середине отрезка АС, вследствие чего:

Е (10;10)

Итак, уравнение диагонали BD запишем в виде

у – yE= КВD(x-xE)

y-10= (x-10);

y-10=x+ / 4

4у-40=-3х+30

3х+4у-70=0 – уравнение диагонали BD

Чтобы найти уравнение сторон ромба, надо определить только угловые коэффициенты КАВ = КCD и КВС = КAD прямых, на которых эти стороны лежат, ибо точки, через которые эти прямые проходят, известны – это вершины А и С ромба.

Для определения указанных угловых коэффициентов воспользуемся формулой , позволяющей вычислять тангенс угла φ между двумя заданными прямыми по их угловым коэффициентам К1 и К2; при этом угол φ отсчитывается против часовой стрелки от прямой у = К1х + b1 до прямой у = К2х + b2. Формула оказывается удобной, потому что уравнение диагонали АС уже найдено (и, следовательно, известен ее угловой коэффициент КАС), а положение сторон ромба относительно этой диагонали однозначно определяется внутренними углами А и С, которые равны между собой и для которых по условию известен их тангенс ().

Так диагонали ромба делят его углы пополам, то, положив  из формулы для тангенса двойного угла при  найдем tg φ:

Положим z = tg φ; тогда , тогда

15  2z = 8 (1-z2)

30z=8-8z2

8z2+30z-8=0 /:2

4z2+15z-4=0

D=152-4 4 (-4)= 225+64=289

z1=;

z2=

Но т.к. угол в ромбе φ всегда острый корень z2=-4 отбрасываем и получаем в итоге, что tg φ =

Угол φ является углом между прямыми ВС и АС, с одной стороны, и прямыми АС и CD – с другой (см. чертеж).

Потому в первом случае по формуле  имеем

откуда при  то получим

4()=1+;

= /3

16-12 KBC=3+4KBC;

16 KBC=13;

KBC=

Во втором случае по формуле  имеем =;

При КАС = получим:

;

4(KcD-)=1+KcD;

4KcD-=1+ KcD / 3;

12KcD-16=3+4KcD;

8KcD =19

KcD=

Так как противоположные стороны ромба параллельны, то тем самым мы определили угловые коэффициенты всех его сторон.

КCD = KAB= ;

KBC = KAD = .

Зная теперь эти угловые коэффициенты и координаты вершин А и С, по уже использовавшимся выше формулам найдем уравнения прямых АВ, CD, BC и AD.

Уравнение АВ: у – уA = KAB (х – хA),

у -2 =  (х-4) /8;

8у-16=19х-76;


Информация о работе «Общий курс высшей математики»
Раздел: Математика
Количество знаков с пробелами: 12508
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
18574
2
0

бнику, решения задач необходимо ответить на вопросы для самопроверки, помещенные в конце темы. В соответствии с действующим учебным планом студенты-заочники изучают курс высшей математики в течение 1 и 2 семестра и выполняют в каждом семестре по две контрольные работы. Первая и вторая контрольные работы выполняются студентами в 1 семестре после изучения тем 1-2 и 3-4 соответственно. Третья и ...

Скачать
149274
13
5

... f ¢(xо) = 0, >0 (<0), то точка xоявляется точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные. На отрезке [a,b] функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка [a,b]. Пример 3.22. Найти экстремумы функции f(x) ...

Скачать
13201
0
7

... , проводилось по всем темам учебного плана третьего семестра и носило исследовательский характер. Исследованию подлежали два основных пункта: Целесообразность использования данной тестирующей оболочки в процессе обучения высшей математике. Создание эффективных тестов, оценивающих умения учащихся. Необходимо было решить следующие диагностические задачи: сравнить уровни усвоения учебного ...

Скачать
31653
12
5

... функций.   Следует помнить, что применять формулы (1.15), (1.16) или 1-6 можно для функции  только в случае, если  при . Упражнения к § 3.1 Комбинаторика 3.1 Вычислить: 3.2 Решить уравнения и неравенства: 1) 2) 3)  4) 5)  6)   7)  8) 3.3 Доказать: 1)  , 2) 3)  4) 3.4 Сколько пятизначных чисел с неповторяющимися цифрами можно составить из пяти цифр ...

0 комментариев


Наверх