Курсова робота з математики

«Дослідження функцій гіпергеометричного рівняння»


Введення

У зв'язку із широким розвитком чисельних методів і зростанням ролі чисельного експерименту у великому ступені підвищився інтерес до спеціальних функцій. Це пов'язане із двома обставинами. По-перше, при розробці математичної моделі фізичного явища для з'ясування відносної ролі окремих ефектів вихідну задачу часто доводиться спрощувати для того, щоб можна було одержати рішення в легко аналізованій аналітичній формі. По-друге, при рішенні складних задач на ЕОМ зручно використовувати спрощені задачі для вибору надійних і економічних обчислювальних алгоритмів. Дуже рідко при цьому можна обмежитися задачами, що приводять до елементарних функцій. Крім того, знання спеціальних функцій необхідно для розуміння багатьох важливих питань теоретичної й практичної фізики.

Найбільше часто вживаними функціями є так звані спеціальні функції математичної фізики: класичні ортогональні поліноми (поліноми Якоби, Лагерра, Ермита), циліндричні, сферичні й гіпергеометричні. Теорії цих функцій і їхніх додатків присвячений цілий ряд досліджень.


1. Гіпергеометричне рівняння

1.1 Визначення гіпергеометричного ряду

Гіпергеометричним рядом називається статечної ряд виду

де z – комплексна змінна, , ,  - параметри, які можуть приймати будь-які речовинні або комплексні значення ( 0,-1,-2,…),і символ  позначає величину

==1

Якщо  й  – нуль або ціле негативне число, ряд обривається на кінцевому числі членів, і сума його являє собою поліном відносно z. За винятком цього випадку, радіус збіжності гіпергеометричного ряду рівняється одиниці, у чому легко переконатися за допомогою ознаки збіжності Даламбера: думаючи

zk

маємо

= ,

коли k , тому гіпергеометричний ряд сходиться при <1 і розходиться при >1.

Сума ряду

F( , , ,z) = , <1 (1.1)

називається гіпергеометричною функцією.

Дане визначення гіпергеометричної функції придатне лише для значень z, що належать колу збіжності, однак надалі буде показано, що існує функція комплексного змінного z, регулярна в площині з розрізом (1, ) яка при <1 збігається з F( , , ,z). Ця функція є аналітичним продовженням F( , , ,z) у розрізану площину й позначається тим же символом.

Щоб виконати аналітичне продовження припустимо спочатку що R( )>R( )>0 і скористаємося інтегральним поданням

(1.2)

k=0,1,2,..

Підставляючи (1.2) в (1.1) знаходимо

F( , , ,z) = = =

причому законність зміни порядку інтегрування й підсумовування випливає з абсолютної збіжності.


Дійсно, при R( )>R( ) >0 і <1

=

= F( , R( ),R( ), )

На підставі відомого біноминального розкладання

=(1-tz)-a(1.3)

0 t 1, <1

тому для F( , , ,z) виходить подання

F( , , ,z)= (1.4)

R( )>R( ) >0 і <1

Покажемо, що інтеграл у правій частині останньої рівності зберігає зміст і представляє регулярну функцію комплексного змінного z у площині з розрізом (1, ).

Для z приналежні області ,  (R – довільно велике,  і  довільно малі позитивні числа), і 0 < t < 1 підінтегральне вираження є регулярна функція z і безперервна функція t ; тому досить показати що інтеграл сходиться рівномірно в розглянутій області. Доказ треба з оцінки


(М – верхня границя модуля функції (1-tz)-a, безперервної в замкнутій області

, , 0 t 1)

що показує, збіжність інтеграла буде при R( )>R( ) >0 інтеграл

 сходиться

Таким чином, умова <1 в (1.4) може бути відкинуто, і шукане аналітичне продовження гіпергеометричної функції в розрізану площину дається формулою

F( , , ,z)= (1.5)

R( )>R( ) >0;

У загальному випадку, коли параметри мають довільні значення, аналітичне продовження F( , , ,z) площина з розміром (1, ) може бути отримане у формі контурного інтеграла, до якого приводить підсумовування ряду (1.1) за допомогою теорії відрахувань.

Більше елементарний метод продовження, що не дає, однак, можливість одержати в явній формі загальне аналітичне вираження гіпергеометричної функції, полягає у використанні рекурентного співвідношення (1.6)

 F( , , ,z) =  +

справедливість якого може бути встановлена підстановкою в нього ряду (1.1). Після підстановки й приведення подібних членів коефіцієнт при zk у правій частині (1.6) буде

+ -  = = { - - }= = (

Шляхом повторного застосування цієї тотожності можна представити функцію F( , , ,z) з довільними параметрами ( 0,-1,-2,…)у вигляді суми

F( , , ,z)= F( +s, +p, +2p, z) (1.7)

де р – ціле позитивне число  ( , , ,z) – поліном відносно z. Якщо вибрати число р досить більшим, так, щоб R( )>-p і R( - )>-p, то аналітичне продовження кожної з функцій F( +s, +p, +2p, z) може бути виконане по формулі (1.5). Підставляючи отримані вираження в (1.7) одержимо функцію, регулярну в площині з розрізом (1, ), що при <1 збігається із сумою гіпергеометричного ряду (1.1) і, отже, є шуканим аналітичним продовженням.

Гіпергеометрична функція F( , , ,z) відіграє важливу роль в аналізі і його додатках. Введення цієї функції дає можливість одержати рішення багатьох цікавих проблем теоретичного й прикладного характеру, до яких, зокрема, ставиться задача конформного відображення трикутника, обмеженого пересічними прямими або дугами окружностей, різні задачі квантової механіки й так далі.

Велика кількість спеціальних функцій може бути виражене через функцію F( , , ,z), що дозволяє розглядати теорію цих функцій як відповідні спеціальні випадки загальної теорії, даної в справжньому пункті.


Информация о работе «Дослідження функцій гіпергеометричного рівняння»
Раздел: Математика
Количество знаков с пробелами: 20161
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
16883
0
1

... з арифметики: відшукати суму деякої кількості натуральних послідовних чисел. Учитель вважав, що учні досить довго шукатимуть відповідь. Але через кілька хвилин Карл розв'язав задачу. Коли вчитель проглянув розв'язання, то побачив, що малий Гаусс винайшов спосіб скороченого знаходження суми членів арифметичної прогресії. Щасливий випадок звів Гаусса з першим у навчанні учнем цієї самої школи – ...

0 комментариев


Наверх