1.3 Гіпергеометричне рівняння
Помітимо, що гіпергеометрична функція u= F( , , ,z) є інтегралом лінійного диференціального рівняння
z(1-z) +[ -( + +1)] - u=0 (2.16)
регулярним в околиці крапки z=0.
Рівняння (2.16) називається гіпергеометричним і включає, як окремі випадки, багато диференціальних рівнянь, що зустрічаються в додатках.
Якщо привести це рівняння до стандартної форми, розділивши його на коефіцієнт при другій похідній, то коефіцієнти отриманого рівняння будуть регулярними функціями змінного z в області 0< <1 <1, наявними при z=0 полюс першого порядку або звичайну крапку, залежно від значень параметрів , , .
Із загальної теорії лінійних диференціальних рівнянь треба, що в такому випадку розглянуте рівняння повинне мати приватне рішення виду
u=zs zk (2.17)
де s – належне обране число, 0, статечної ряд сходиться при <1
u= zk+s
= (k+s)zk+s-1
= (k+s)(k+s-1)zk+s-2
Підставляючи (2.17) у рівняння (2.16) знаходимо
z(1-z) ( zk+s +[ -( + +1)z] ( zk+s - zk+s=0,
z(1-z) ( zk+s-1(k+s)(k+s-1))+[ -( + +1)z] ( zk+s-1(k+s))-
zk+s=
= ( zk+s-1(k+s)(k+s-1))- ( zk+s(k+s)(k+s-1))+ ( zk+s-1 (k+s))-
- zk+s( + +1)(k+s))- zk+s =
= zk+s-1(k+s)(k+s-1+ )- zk+s(s+k+ )(s+k+ )=0,
звідки для визначення показника s і виходить система рівнянь
s(s-1-)=0,
(s+k)(s+k-1+ ) - (s+k-1+ )(s+k-1+ )=0,
k=1,2,...,
перше з яких дає s=0 або s=1-
Припустимо, що 0,-1,-2,…і виберемо s=0
Тоді для обчислення коефіцієнтів одержимо рекурентне співвідношення
= k=1,2,…,
звідки, якщо прийняти =1, треба
= k=0,1,2,…,
де для скорочення запису уведене позначення
= ( +1)…(+k-1),
=1,k=1,2,…,
У такий спосіб перше приватне рішення рівняння (2.16) при 0,-1,-2,…буде
u= = F( , , ,z)= zk, <1 (2.18)
Аналогічно, вибираючи s=1- одержуємо в припущенні, що 2,3,4,…
= k=1,2,…,
звідки, якщо взяти =1 знаходимо
=
k=0,1,2,...,
Таким чином, при 2,3,4,…рівняння (2.16) має друге приватне рішення
u= = = F(1- + ,1- + ,2- ,z), (2.19)
<1,
Якщо не є цілим числом ( 0, 1, 2,…),те обоє рішення (2.18-2.19) існують одночасно й лінійно незалежні між собою, так, що загальне рішення рівняння (2.17) може бути представлене у формі
u=A F( , , ,z)+B F(1- + ,1- + ,2- ,z), (2.20)
де А и В довільні постійні <1,
... з арифметики: відшукати суму деякої кількості натуральних послідовних чисел. Учитель вважав, що учні досить довго шукатимуть відповідь. Але через кілька хвилин Карл розв'язав задачу. Коли вчитель проглянув розв'язання, то побачив, що малий Гаусс винайшов спосіб скороченого знаходження суми членів арифметичної прогресії. Щасливий випадок звів Гаусса з першим у навчанні учнем цієї самої школи – ...
0 комментариев