3. Формула Остроградського-Гаусса
Формула Остроградського-Гаусса встановлює зв'язок між поверхневим інтегралом по замкненій поверхні і потрійним інтегралом по просторовій області, обмеженій цією поверхнею. Ця формула є аналогом формули Гріна, яка, як відомо, встановлює зв'язок криволінійного інтеграла по замкненому контуру з подвійним інтегралом по плоскій області, обмеженій цим контуром.
Нехай замкнена область обмежена замкненою поверхнею , причому знизу та зверху обмежена гладкими поверхнями та , рівняння яких та (рис. 7).
Рисунок 7 – Замкнена область
Припустимо, що проекцією області на площину є область . Нехай в області визначено неперервну функцію , яка в цій області має неперервну похідну .
Розглянемо потрійний інтеграл
.
У правій частині цієї рівності перший подвійний інтеграл запишемо за допомогою поверхневого інтеграла по зовнішній стороні поверхні , а другий подвійний інтеграл – по зовнішній стороні поверхні . Враховуючи кути між нормаллю та віссю , отримуємо
.(13)
Аналогічно, припустивши, що функції , неперервні в області , можна отримати формули
,(14)
.(15)
Додавши почленно рівності (13), (14) і (15), отримаємо формулу
,(16)
яку називають формулою Остроградського-Гаусса. Ця формула справедлива і для довільної області , яку можна розбити на скінченне число областей, для яких виконуються рівності (13) – (15).
За допомогою формули Остроградського-Гаусса зручно обчислювати поверхневі інтеграли по замкнених поверхнях.
4. Формула Стокса
Формула Стокса встановлює зв'язок між поверхневим і криволінійним інтегралами. Нехай – поверхня, задана рівнянням , причому функції – неперервні в області – проекції поверхні на площину ; – контур, який обмежує , а – проекція контуру на площину , тобто – межа області .
Виберемо верхню сторону поверхні (рис. 8).
Рисунок 8 – Поверхня
Якщо функція неперервна разом із своїми частинними похідними першого порядку на поверхні , то справедлива формула
.(17)
поверхневий інтеграл формула стокс
Доведення
Перетворимо криволінійний інтеграл, який міститься у лівій частині рівності (17). Оскільки контур лежить на поверхні , то координати його точок задовольняють рівняння , і тому значення функції у точках контуру дорівнюють значенням функції у відповідних точках контуру . Звідси випливає, що
.
Застосовуючи до знайденого інтеграла формулу Гріна, отримаємо
.
Тут підінтегральна функція дорівнює частинній похідній по від складеної функції .
Оскільки – верхня сторона поверхні, тобто ( – гострий кут між нормаллю до поверхні і віссю ), то нормаль має проекції . Але напрямні косинуси нормалі пропорційні відповідним проекціям, тому
,
Тоді
Отже,
.
Аналогічно можна довести, що при відповідних умовах справедливі формули:
;(18)
.(19)
Додаючи почленно рівності (17), (18) і (19), отримуємо формулу
,
яка називається формулою Стокса. За допомогою формули (8), яка пов'язує поверхневі інтеграли першого та другого роду, цю формулу можна записати так:
(20)
Формула Стокса дає змогу обчислювати криволінійні інтеграли по замкнутих контурах за допомогою поверхневих інтегралів.
З формули Стокса випливає, що коли виконуються рівності
,(21)
то криволінійний інтеграл по довільному просторовому замкненому контуру дорівнює нулю:
.(22)
А це означає, що в даному випадку криволінійний інтеграл не залежить від форми контура інтегрування.
... прямокутних координат до сферичних (рис. 4, б), які пов'язані з формулами Рисунок 4 – Координати: а) циліндричні; б) сферичні ; , якобіан перетворення . З формули (8) знаходимо потрійний інтеграл у сферичних координатах: . (10) Назва «сферичні координати» пов'язана з тим, що координатна поверхня є сферою. При обчисленні потрійного інтеграла в циліндричних чи сферичних ...
... Під знаком границі маємо інтегральну суму, складену для неперервної в області функції . Ця функція інтегровна в області , тому границя у формулі (10) існує і дорівнює подвійному інтегралу (8). 3. Застосування подвійних інтегралів до задач механіки 1. Маса пластини. Нехай на площині маємо матеріальну пластину, яка має форму обмеженої замкненої області , в кожній точці якої густина визначає ...
... йного інтеграла зводять до обчислення так званого повторного інтеграла - двох звичайних визначених інтегралів. Покажемо, як це робиться. Припустимо, що при функція . Тоді, згідно з формулою (7), подвійний інтеграл виражає об'єм циліндричного тіла (рис.3) з основою , обмеженого зверху поверхнею . Обчислимо цей об'єм за допомогою методу паралельних перерізів [6]: , де - площа перерізу тіла ...
... прийнятної точності необхідна велика кількість статистичних випробувань. Теорія методу Монте-Карло вивчає способи вибору випадкових величин для вирішення різних завдань, а також способи зменшення дисперсії випадкових величин. 3. Програма обчислення кратного інтеграла методом Монте-Карло Обчислити певний інтеграл . за методом “Монте-Карло” по формулі , де n – число випробувань ;g(x) – щі ...
0 комментариев