2.2 Розробка та обґрунтування принципової схеми підсилювача
За способами підключення кінцевого каскаду до навантаження можна розподілити: на каскади з безпосереднім включенням навантаження, резисторні, дросельні та трансформаторні.
Найбільш високий ККД мають дросельні та трансформаторні каскади потужного підсилення. Максимальний ККД в них вдвічі більше, ніж при безпосередньому підключенні навантаження, та майже в 6 разів більше, ніж у резисторного. Однак у резисторного каскаду смуга підсилених частот ширше, ніж у дросельного, і значно ширше трансформаторного. Вартість, маса, габаритні розміри як дросельного, так і трансформаторного, набагато більше від резисторного.
Найпростішим способом підключення навантаження до каскаду потужного підсилювача є безпосереднє введення навантаження у вихідне коло підсилювального елемента без вихідного пристрою. До переваг такої схеми відноситься її простота, відсутність додаткових деталей, втрат потужності у вихідному каскаді, додаткових нелінійних, частотних та перехідних спотворень і можливість посилення сигналів у широкій смузі частот. До недоліків - протікання через навантаження постійної складової струму живлення.
В резисторному каскаді потужного підсилення навантаження підключається в вихідне коло через резисторно-ємнісний пристрій RС. Струм живлення тут через навантаження не проходить; крім того, навантаження поєднано з загальним проводом схеми, що часто буває необхідно. Резисторний каскад простий, але має недоліки в порівнянні з каскадом з безпосереднім включенням - наявність конденсатора, який звужує смугу пропуску підсилювача; розмір конденсатора збільшуються в ділянці низьких частот.
Навантаження, яке підключене безпосередньо та через конденсатор - застосовується в безтрансформаторних кінцевих каскадах, а навантаження, підключене через дросель та трансформатор у трансформаторних кінцевих каскадах.
Можливість використання безтрансформаторних схем саме в транзисторних кінцевих каскадах обумовлена, по-перше тим, що транзистори працюють при порівняно низькій напрузі живлення (тому безпосереднє підключення гучномовця не шкідливе для обслуговуючого персоналу), по-друге, вони можуть працювати на меншому опорі навантаження.
В безтрансформаторних схемах звичайно застосовується послідовне живлення транзисторів від одного чи двох джерел постійної напруги.
При розрахунку кінцевого каскаду з великою потужністю застосовують схеми на складених транзисторах. Складені транзистори мають великі коефіцієнти струму, великий вхідний і малий вихідний опори. До недоліків слід віднести звуження частотного діапазону складеного транзистора в порівнянні з одинарним.
Залежно від способу включення і типу застосовуваних транзисторів розрізняють дві схеми - схему Дарлінгтона та схему Шиклої. Комбінація складених транзисторів в вихідних каскадах дозволяє створити декілька різновидів схем кінцевого каскаду.
Характеризуючи ці схеми, можливо відмітити:
- коефіцієнти передачі за струмом верхнього та нижнього плеч у всіх схемах практично рівні коефіцієнту передачі за струмом складених транзисторів;
- в квазікомплектарних схемах спостерігається несиметричність вихідного сигналу з-за нерівності коефіцієнта підсилення плеч каскаду за напругою, а також із-за нерівності вхідного та вихідного опорів. Однак введення глибокого зворотного негативного зв'язку приводить до незначних відмін цих параметрів.
- коефіцієнти передачі за струмом верхнього та нижнього плеч у всіх схемах практично рівні коефіцієнту передачі за струмом складених транзисторів;
- в квазікомплектарних схемах спостерігається несиметричність вихідного сигналу з-за нерівності коефіцієнта підсилення плеч каскаду за напругою, а також із-за нерівності вхідного та вихідного опорів. Однак введення глибокого зворотного негативного зв'язку приводить до незначних відмін цих параметрів.
Основні вимоги, які ставлять до передкінцевого каскаду — одержання максимального підсилення за напругою для компенсації малих коефіцієнтів підсилення за напругою вихідного та вхідного каскадів.
При однотактному кінцевому каскаді, а також двотактному безтрансформаторному з послідовним збудженням плеч або з паралельним збудженням транзисторів різного типу (р-п-р і п-р-п) від передкінцевого каскаду потрібна однофазна вихідна напруга. У цьому випадку за передкінцевий може
правити звичайний резисторний каскад, в якому транзистор частіше всього ввімкнутий за схемою з загальним емітером, з безпосереднім або ємнісним зв'язком з кінцевим каскадом.
Функцію передкінцевого каскаду на схемі, наведеної на рисунку 2 виконує транзистор УТ1.
Амплітуда сигналу у попередніх каскадах звичайно мала, тому нелінійні спотворення переважно невеликі. Найбільше поширення в попередніх каскадах одержала схема включення транзистора з загальним емітером, яка дозволяє отримати найбільше підсилення і має достатньо великий вхідний опір. Цим вимогам відповідає резистивний каскад, який може забезпечити рівномірне підсилення в широкій смузі частот при малих спотвореннях і не схильний наводкам від зовнішніх магнітних полів.
З можливих способів стабілізації режиму в попередніх каскадах найбільше поширення одержала емітерна стабілізація як найбільш ефективна і проста за схемою. При використанні безпосередніх зв'язків поряд з емітерною стабілізацією вводиться негативний загальний зворотний зв'язок за постійним струмом. Для підвищення лінійності підсилювача, одержання великого вхідного опору, розв'язання за постійним струмом входу підсилювача та кола зворотного зв'язку, більш високої температурної стабільності, поліпшення динамічних характеристик у ролі вхідного каскаду застосовують диференційний каскад (рисунок 3).
Рисунок 2.2 – Схема кінцевого каскаду, зібраного на складених комплементарних транзисторах.
Рисунок 2.3 – Принципова схема диференційного каскаду
Одним із основних напрямів створення високоякісних підсилювачів є застосування зворотного зв'язку. В підсилювачах застосовується зворотний негативний зв'язок за змінним та постійним струмом. Застосування НЗЗ за струмом дозволяє зменшити лінійні і нелінійні спотворення, які вносяться підсилювачем, знизити вихідний опір підсилювача потужності.
Негативний зворотний зв'язок за постійним струмом стабілізує напругу спокою транзисторів кінцевого каскаду. Застосування грубого НЗЗ (більш 40-50 дБ) не рекомендується, тому що це приводить до виникнення динамічних спотворень. Якщо потрібно одержати коефіцієнт загальних гармонійних спотворень менше 0,1-0,5 %, в підсилювач вводиться НЗЗ більше 50 дБ.
Для підвищення амплітуди вихідної напруги належить застосовувати вихідні транзистори з можливо меншим значенням опору насичення, а попередній каскад будувати за схемою, яка забезпечує найбільшу амплітуду сигналу на базах транзисторів фазоінвертерного каскаду.
Для цього в схемі попереднього каскаду підсилювача повинна обов'язково бути "Вольтдобавка", а опір в емітерному колі транзистора повинен бути мінімальним чи зовсім відсутнім.
В той же час повинні бути вжити заходи щодо жорсткої стабілізації постійної напруги в точці з'єднання вихідних транзисторів при зміні температури.
Для забезпечення добрих демпфувальних властивостей підсилювача, вихідний опір транзисторів кінцевого каскаду повинен бути принаймні в 3-5 разів менше опору навантаження. Подальше зменшення вихідного опору не має смислу, тому що в коло демпфувального струму, що виникло за рахунок е.р.с. котушки гучномовця, крім вихідного опору входить опір навантаження.
"Вольтдобавка" звичайно вводиться за допомогою позитивного зворотного зв'язку (ПЗЗ), напруга якого з виходу підсилювача подається на відвід опору навантаження передкінцевого каскаду. ПЗЗ приводить до збільшення опору підсилювача. Збільшення напруги на передкінцевому каскаді приводить до зменшення нелінійних спотворень.
В безтрансформаторних вихідних каскадах найбільш часто застосовують режими В або АВ. При використовуванні режиму класу В в підсилювачах на ділянці малих струмів виникають перехідні спотворення, які виявляються у вигляді відсічки струму. Кількісно перехідні спотворення оцінюються часом переключення підсилюючих елементів. Зменшення перехідних спотворень досягається застосуванням режиму класу АВ, при якому на вхід підсилюючого елемента подається відповідна напруга зміщення. Напруга зміщеная створюється за допомогою діодного кола чи за допомогою транзисторної схеми.
Режим роботи транзисторів кінцевого каскаду визначає струм спокою, який протікає через транзистор при відсутності керуючого сигналу. Зміна температурних умов приводить до зміни струму спокою і, відповідно, режиму роботи транзисторів кінцевого каскаду, що приводить до збільшення нелінійних перехідних спотворень.
Найбільш часто в підсилювачах використовується діодна стабілізація струму, заснована на температурній залежності вольтамперних характеристик діоду. Напруга зміщення забезпечується характеристиками діоду. Рекомендується застосовувати кількість діодів, яка дорівнює кількості транзисторів в кінцевому каскаді. Але при такому способі складно забезпечити з достатньою точністю потрібне зміщення. Для більшої точності підстроювання напруги зміщення послідовно з діодами включається опір.
Так як вхідний опір достатньо великий в якості вхідного каскаду була обрана схема диференційного каскаду, а в якості кінцевого каскаду з урахуванням заданої потужності була обрана схема кінцевого каскаду, зібраного на комплементарних транзисторах.
... і ключі реалізовані із зворотними зв’язками на діодах Шоткі. Це дозволило значно підвищити швидкодію схем і є зараз основою надвеликих інтегральних схем, які в свою чергу є базою всієї комп'ютерної електроніки. Окрім цього використовуються елементи емітерно-зв’язної логіки (ЕЗЛ) (на основі диференційних каскадів струмових ключів), n-, p- МОН логіка (на польових транзисторах) та комплементарна ...
0 комментариев