5. Власні значення і власні вектори оператора
Число називається власним числом лінійного оператора , якщо у просторі можна знайти такий ненульовий вектор , що
(5.1)
Будь-який ненульовий вектор, задовольняючий рівності (5.1), називають власним вектором оператора , що відповідає власному значенню .
Рівність (5.1) можна записати по іншому , де – тотожний оператор. Оскільки – ненульовий вектор, то зрозуміло, що розмірність ядра оператора не менше одиниці. Нехай – розмірність простору , в якому діє оператор . Відомо, що . Звісно,
. Але тоді .
Таким чином, якщо число є власним значенням оператора , то є коренем рівняння (характеристичне рівняння або вікове рівняння оператора ).
Вияснимо, чи всі корені характеристичного рівняння будуть власними значеннями оператора . Нехай – який-небудь корінь рівняння, тоді для цього значення . Це означає, що матриця оператора буде виродженою у будь-якому базисі простору . Як наслідок, . Так як , то . А це означає, що існую по меншій мірі один ненульовий вектор , такий, що чи . Таким чином, будь-який корінь характеристичного рівняння буде власним значенням оператора , тобто вірне твердження.
Теорема 5.1. Для того, щоб комплексне число було власним значенням лінійного оператора , необхідно і достатньо, щоб це число було коренем характеристичного рівняння .
Нехай – базис простору и нехай
,
матриця лінійного оператора у цьому базисі. Відомо, що матриця тотожного оператора в будь-якому базисі буде одиничною, тому в розглянутому базисі простору оператор характеризується такою матрицею
.
Визначник цієї матриці, тобто , називається характеристичним або віковим визначником оператора . Легко побачити, що добуток елементів головної діагоналі вікового визначника буде многочленом степені , решта членів визначника будуть многочленами степені не вище . З цього видно, що віковий визначник оператора є многочленом степені . За наслідком з основної теореми алгебри такий многочлен має коренів, якщо кожний корінь рахувати стільки разів, яка його кратність. Тому число власних значень оператора , діючого в -мірному просторі, дорівнює , якщо кожне власне значення рахувати стільки разів, яка його кратність.
Відомо, що в різних базисах простору матриці оператора , взагалі-то, різні. У зв’язку з цим виникає питання про пошук такого базису простору , в якому матриця оператора має найпростіший вигляд (найбільше число нульових елементів). Припустімо, що у просторі існує базис всі вектори якого є власними векторами оператора , тобто . У цьому базисі матриця оператора буде мати діагональний вигляд
.
Навпаки, якщо в якому-небудь базисі простору матриця лінійного оператора має діагональний вид, то всі вектори базису є власними векторами оператора . Таким чином, доведено наступне твердження.
Теорема 5.2. Для того, щоб матриця лінійного оператора у базисі простору була діагональною, необхідно і достатньо, щоб вектори були власними векторами оператора . Теорема 5.3. Якщо власні значення лінійного оператора , діючого в -мірному просторі , різні, тоді відповідні їм власні вектори лінійно незалежні.
Наслідок. Якщо характеристичне рівняння має різних коренів, то у -мірному векторному просторі існує базис, в якому матриця оператора має діагональний вид.
Якщо оператор має кратні власні значення, то може виявитися, що максимальна лінійно незалежна сукупність власних векторів оператора не буда утворювати базис лінійного простору, в якому діє оператор . У зв’язку з цим виникає питання, якими векторами доповнити до базису простору максимальну лінійно незалежну сукупність власних векторів, щоб у цьому базисі матриця мала найпростіший вигляд. Відповідь на це питання дав французький математик Жордан.
Вектор називається приєднаним вектором оператора , що відповідає кратному власному значенню цього оператора, якщо можна вказати таке натуральне число , що . Число називається порядком приєднаного вектора . Нехай – приєднаний вектор порядку , що відповідає власному значенню . Позначимо через вектор . Тоді за означенням приєднаного вектора або . Вектор виявляється власним вектором оператора . Цю властивість приєднаного вектора можна використовувати при побудові приєднаних векторів за заданим власним вектором .
Теорема 5.4. (теорема Жордана). У -мірному векторному просторі існує базис , побудований із власних векторів і відповідних їм приєднаних векторів, такий, що
, ; , .
У цьому базисі матриця оператора має наступний вид
,
де - квадратна матриця порядку (клітка Жордана):
.
Вказана в теоремі 5.4 форма матриці оператора називається жордановою або канонічною формою матриці цього оператора.
На кінець відмітимо, що якщо – власний вектор лінійного оператора , то і вектор , де – довільно взяте відмінне від нуля число, також буде власним вектором оператора . Дійсно,
.
Приклад 1. З’ясувати, які з перетворень , заданих шляхом завдання координат вектора як функцій координат вектора , являються лінійними, і в випадку лінійності знайти їх матриці в тому базисі, в якому задано координати векторів і .
.
Розв’язання: Для того, щоб дізнатись, чи являються лінійними функції координат вектора треба перевірити, чи виконуються наступні дві аксіоми:
Аксіома адитивності: .
Для будь-яких векторів та повинно виконуватись
.
.
Аксіома адитивності виконується.
Перевіримо аксіому однорідності:
Так як властивість адитивності і однорідності виконується, тому перетворення – лінійне.
Приклад 2. З’ясувати, які з перетворень , заданих шляхом завдання координат вектора як функцій координат вектора , являються лінійними, і в випадку лінійності знайти їх матриці в тому базисі, в якому задано координати векторів і .
.
Розв’язання: Для того, щоб дізнатись, чи являються лінійними функції координат вектора треба перевірити, чи виконуються наступні дві аксіоми:
Аксіома адитивності: .
Для будь-яких векторів та повинно виконуватись
.
Так як властивість адитивності не виконується, тому перетворення – не лінійне.
Приклад 3. Показати, що множення квадратних матриць другого порядку а) зліва, б) з права на дану матрицю являються лінійними перетвореннями простору всіх матриць другого порядку, і знайти матриці їх перетворень в базисі, який складається з матриць:
, , ,
Розв’язання: За означенням матриці лінійного перетворення , . Знаходимо образи базисних векторів і обчислюємо їх координати в заданому базисі:
Розташувавши отримані координати образів за стовпчиками отримаємо матрицю лінійного перетворення:
.
Приклад 4. Лінійне перетворення в базисі має матрицю
A=
Знайти матрицю цього ж перетворення в базисі: e, , , +.
Розв’язання: Формула зв’язку між векторами старого і нового базисів у матричному записі має вигляд:
Обернену матрицю знайдемо за допомогою приєднаної:
Підставляємо отримані значення в формулу, отримаємо:
.
Приклад 5. Знайти власні значення і власні вектори лінійного перетворення, заданому в деякому базисі матрицею: .
Розв’язання: Складаємо характеристичне рівняння і розв’язавши його знаходимо власні числа:
Розв’язуємо її методом Гауса, для цього приводимо матрицю до східчастого вигляду:
Складаємо однорідну систему рівнянь для визначення власних векторів:
Оскільки максимальна кількість лінійно незалежних власних векторів менша за вимірність простору, то власні вектори не утворюють базис простору і таким чином матриця не діагоналізуєма.
Приклад 6. З’ясувати, яку з матриць лінійних перетворень можна привести до діагонального виду шляхом переходу до нового базису. Знайти цей базис і відповідну йому матрицю:
Розв’язання: Складаємо характеристичне рівняння і розв’язавши його знаходимо власні числа:
Розв’язуємо її методом Гауса, для цього приводимо матрицю до східчастого вигляду:
A=
Власні вектори мають вигляд: .
,
Формула зв’язку між векторами старого і нового базисів у матричному записі має вигляд:
.
Матриця діагоналізована.
Приклад 7. З’ясувати, яку з матриць лінійних перетворень можна привести до діагонального виду шляхом переходу до нового базису. Знайти цей базис і відповідну йому матрицю:
Розв’язання: Складаємо характеристичне рівняння і розв’язавши його знаходимо власні числа:
Розв’язуємо її методом Гауса, для цього приводимо матрицю до східчастого вигляду:
A=
A=
Матриця не може бути діагоналізованою, так як а.к.=г.к.=1.
Висновки
В даній курсовій роботі розглянуто базові властивості лінійних операторів, поняття матриці лінійного оператора та питання зв’язку матриць оператора у різних базисах. Крім того, до роботи включені питання діагоналізіруємості матриці оператора, які пов’язані з існуванням базису, що складається з власних векторів оператора. За усіма розглянутими теоретичними питаннями зроблена підборка задач, яка їх ілюструє та допомагає детально розібратися в теоретичному матеріалі.
оператор вектор лінійний матриця базис
Перелік посилань
1. Курош А.Г. Курс вищої алгебри. – М.: Наука, 1968. – 331 с.
2. Кострикін А.И., Манін Ю.И. Лінійна алгебра і геометрія. – М.: Наука, 1986. – 304 с.
3. Проскуряков І. В. Збірник задач з лінійної алгебри. – М.: Наука, 1974. – 384 с.
... В АБС АКБ «ПРОМІНВЕСТБАНК» ТА ОЦІНКА РІВНЯ ВРАЗЛИВОСТІ БАНКІВСЬКОЇ ІНФОРМАЦІЇ 3.1 Постановка алгоритму задачі формування та опис елементів матриці контролю комплексної системи захисту інформації (КСЗІ) інформаційних об’єктів комерційного банку В дипломному дослідженні матриця контролю стану побудови та експлуатації комплексної системи захисту інформації в комерційному банку представлена у вигляді ...
... і над плановим. Відомо, що собівартість є одним з головних джерел резервів підвищення ефективності роботи підприємства. Звідси сформуємо мету і задачі даної роботи. Метою даної роботи є підвищення ефективності роботи підприємства ВАТ «Дніпрополімермаш» шляхом управління собівартістю продукції. Відповідно, для досягнення поставленої мети необхідно вирішити наступні задачі: 1. Проаналізувати ...
... в даній роботі, була опробована й досліджена в реальних умовах моєї професійної діяльності й показала свою працездатність і ефективність. 3. Розробка системи керування та актуалізації інформації web-сайту національного оператора Енергоринка 3.1 Вибір інструментарію для створення web-сайту та системи керування Перед тим, як безпосередньо перейти до створення Web-сайту Національного ...
... маржі В такому випадку, макимізація прибутку відбувається за рахунок швидкого обороту коштів. Запропонований метод було прийнято як альтернативний метод визначення умов надання банківських послуг в Дніпропетровській філії АБ "Правексбанк", що дозволило збільшити фінансовий результат за перші 5 місяців 2008 року на 6 процентів. 4. АВТОМАТИЗОВАНА ІНФОРМАЦІЙНА СИСТЕМА Рис. 4.1 – Блок- ...
0 комментариев