3. ФОРМАЛЬНАЯ КИНЕТИКА

 

3.1 Необходимые исходные сведения и основные уравнения

Химическая кинетика – раздел физической химии изучающий закономерности протекания химической реакции во времени. В задачу этого раздела входит определение скорости и константы скорости химической реакции, а также изучение закономерностей их изменения в зависимости от различных факторов (температуры, давления, концентрации реагирующих веществ и др.).

Под скоростью химической реакции понимают изменение концентрации веществ в единицу времени. Для реакций, описываемых стехиометрическим уравнением

nА1 + nА2 +nА3 А3 +…. ® nВ1 + nВ2 + nВ3 +…,

истинная скорость выражается

 

v = -dc/ dt = +dc/ dt,(3.1)

где  - изменение концентрации одного из реагирующих веществ, моль/л; - изменение концентрации одного из продуктов реакции, моль/л.; dt - промежуток времени, в течение которого произошло это изменение, с. Знак «+» относится к продуктам реакции (прибывают во времени), знак «-» относится к исходным веществам (убывают во времени). Средняя скорость химической реакции в конечном промежутке времени выражается формулой


v = ± Dсi/Dt, (3.2)

где Dсi – изменение концентрации любого участника химичес-кой реакции за промежуток времени Dt. Зависимость скорости химической реакции от концентрации исходных веществ выражается законом действия масс (основной постулат химической кинетики):

(3.3)

где k – константа скорости химической реакции. Физический смысл константы скорости химической реакции заключается в том, что она численно равна скорости химической реакции в случае равенства единице (в молях на литр) концентрации всех реагирующих веществ. В химической кинетике различают также понятия «молекулярность» и «порядок реакции».

Молекулярность – это количество частиц, участвующих в элементарном акте химической реакции. Она может принимать любое целое положительное число. Однако вследствие малой вероятности одновременного столкновения большого количества частиц реакции с молекулярностью, превышающей четыре, практически не встречаются.

Порядок реакции – это сумма стехиометрических коэффициентов, стоящих перед символами химических веществ, участвующих в реакции, или сумма показателей степеней, с которыми концентрации веществ входят в основной постулат химической кинетики:

 

n = Σ vi, (3.4)

где n – порядок реакции.

Вследствие того, что запись химического уравнения не от-ражает механизма протекания реакции, в большинстве случаев порядок реакции не совпадает с суммой стехиометрических коэффициентов. Порядок реакции может принимать любое положительное значение, включая ноль и дробные числа. Порядок реакции необходим для правильного выбора кинети-ческого уравнения, позволяющего рассчитать скорость и константу скорости химической реакции.

Реакции нулевого порядка. В этих реакциях Sni = 0, следо-вательно, после объединения уравнений (3.1), (3.2) и (3.3) получаем

dc/dt = k.(3.5)

,(3.6)

где c0,– начальная концентрация реагирующего вещества, моль/л, х – число молей исходного вещества А, прореагировавшего к моменту времени t, с, в единице объема, моль.

Реакции первого порядка. В этих реакциях Sn= 1, и кинетическое уравнение имеет вид

dc/dt = k с, (3.7)

k = (2,3.lgcA/c0,А)/t. (3.8)

 

Реакции второго порядка. В этих реакциях Sn= 2. Следует различать два случая: n= 2 и n= 1, n= 1. В первом случае начальные концентрации реагирующих веществ одинаковы, поэтому− dc/dt = k.с2, (3.9)

 

k = t-1.( cA-1 - c0,А-1). (3.10)


Во втором случае начальные концентрации реагирующих веществ не одинаковы

 

k=2,3.t-1(c0,-1- c0,-1).lg[(c.c0,)/(c. c0,)]. (3.11)

 

Реакции n-го порядка. В этих реакциях Sn= n. Поэтому общее кинетическое уравнение имеет вид

 

k = (n-1)-1.t-1. (cA1-n − c0,А1-n). (3.12)

Под периодом полупревращения вещества t1/2 понимают промежуток времени, с, в течение которого прореагировала ровно половина первоначально взятого вещества. Период полураспада для разных реакций может принимать очень широкое значение: от долей секунды (радиоактивный распад большинства трансурановых элементов, взрывные реакции и др.) до миллионов лет (радиоактивный распад урана, окисление горных пород и др.). С учетом приведенного определения (c= 1/2 c0,), для реакций нулевого порядка

t1/2 =, (3..13)

для реакций первого порядка

t1/2 = 0,693/k, (3.14)

для реакций второго порядка


t1/2 =. (3.15)

Определение порядка реакции методом Оствальда-Нойеса (интегральный метод):

ni = [(lg(t'1/2/t"1/2)/lg(c0,2/c0,1)] + 1, (3.16)

где t'1/2 – период полураспада, соответствующий начальной концентрации реагирующего вещества c0,1; t"1/2 – период полураспада этого же вещества при другой начальной концентрации c0,2.

Определение порядка реакции методом Вант-Гоффа (дифференциальный метод):

 

ni = (lgw1 - lgw2)/(lgc0,1/c0,2), (3.17)

где w1, w2 – средние скорости реакции, соответствующие начальным концентрациям с0,1 и с0,2.

3.2 Задачи с решениями

1. Вычислите константу скорости бимолекулярной реакции образования фосгена СО + С12 = СОС12, если при 27оС количество реагирующих веществ изменяется следующим образом:

Время, мин 0 12 24 36
Концентрация СО, моль/л 0,01873 0,01794 0,011734 0,01674

Определите концентрацию исходных веществ через три часа после начала реакции.

Решение. Используем уравнение для расчета констант скоростей второго порядка, когда с1 = с2: k = t-1.( c0,A-1 -.c0-1). После подстановки в эту формулу данных из приведенной таблицы (любые три пары) получим: kср = 0,186 мин-1. Рассчитаем концентрацию исходных веществ через три часа после начала реакции: 1,627.х = 0,01174; х = 0,0072; а – х = 0,01873 - 0,00720 = = 0,0115.

Ответ: kср = 0,186 мин-1; [С12] = 0,0072 моль/л; [СО] = = 0,0015 моль/л.


Информация о работе «Кинетика химических и электрохимических процессов»
Раздел: Химия
Количество знаков с пробелами: 84299
Количество таблиц: 25
Количество изображений: 0

Похожие работы

Скачать
36243
0
0

... параметров ионного и электронного транспорта в переходных слоях интерфазы. 4. Принципы создания твердофазных электрохимических преобразователей энергии и информации. 5. Гипотеза о самоорганизации переходных ион-проводящих структур при протекании электрохимических и химических процессов на фазовых границах. Определяющую роль матричных структур в твердофазных электродных реакциях. ...

Скачать
40258
13
12

... устойчивость металлов и сплавов определяется их стойкостью к коррозии в водной среде. Лучшим способом представления термодинамической информации о химической и электрохимической устойчивости металлических систем в водных растворах являются диаграммы рН-потенциал. Впервые такие диаграммы в системе элемент-вода для чистых металлов при температуре 250С были построены Марселем Пурбе и использованы им ...

Скачать
29834
1
0

... агрессивных средах и при наличии различных сопутствующих физических факторов; 3. Определить методы применения противокоррозионных защитных покрытий, в первую очередь лакокрасочных. Обзорно-аналитическая часть Характеристика коррозионных процессов Коррозия металлов - разрушение металлов вследствие физико-химического воздействия внешней среды, при этом металл переходит в окисленное (ионное) ...

Скачать
51477
0
0

... не менее пяти циклов разряд – заряд глубиной 250 Кл/см2. Основные результаты и выводы Настоящая работа обобщает результаты комплексного исследования механизма и кинетики электродных процессов в ионной и электронной подсистемах в низкотемпературных твердых электролитах с использованием импульсных методов. Важнейшим результатом работы является получение новых и уточнение полученных другими исс

0 комментариев


Наверх