ГЛАВА 1 РЯДЫ И ИНТЕГРАЛ ФУРЬЕ

Основные сведения

Функция f(x), определенная на всей числовой оси называется периодической, если существует такое число , что при любом значении х выполняется равенство . Число Т называется периодом функции.

Отметим некоторые с в о й с т в а этой функции:

1) Сумма, разность, произведение и частное периодических функций периода Т есть периодическая функция периода Т.

2) Если функция f(x) период Т , то функция f(ax) имеет период .

3) Если f(x) - периодическая функция периода Т , то равны любые два интеграла от этой функции, взятые по промежуткам длины Т (при этом интеграл существует), т. е. при любых a и b справедливо равенство .

Тригонометрический ряд. Ряд Фурье

Если f(x) разлагается на отрезке  в равномерно сходящийся тригонометрический ряд:

 (1)

,то это разложение единственное и коэффициенты определяются по формулам:

 , где n=1,2, . . .

Тригонометрический ряд (1) рассмотренного вида с коэффициентами называется тригонометрическим рядом Фурье, а  коэффициентами ряда Фурье.

Достаточные признаки разложимости функции в ряд Фурье

Точка  разрыва функции  называют точкой разрыва первого рода, если существует конечные пределы справа и слева этой функции в данной точке.

ТЕОРЕМА 1 (Дирихле). Если  периодическая с периодом  функция непрерывна или имеет конечное число точек разрыва 1-ого рода на отрезке [] и этот отрезок можно разбить на конечное число частей, в каждом из которых f(x) монотонна, то ряд Фурье относительно функции сходится к f(x) в точках непрерывности и к среднеарифметическому односторонних пределов в точках разрыва рода (Функция удовлетворяющая этим условиям называется кусочно-монотонной).

ТЕОРЕМА 2. Если f(x) периодическая функция с периодом  , которая на отрезке [] вместе со своей производной непрерывна или имеет конечное число точек разрыва первого рода, то ряд Фурье функции f(x) в точках разрыва к среднему арифметическому односторонних пределов (Функция удовлетворяющая этой теореме называется кусочно-гладкой).

Ряды Фурье для четных и нечетных функций

Пусть f(x) - четная функция с периодом 2L , удовлетворяющая условию f(-x) = f(x) .

Тогда для коэффициентов ее ряда Фурье находим формулы:

=

=

= 0 , где n=1,2, . . .

Таким образом, в ряде Фурье для четной функции отсутствуют члены с синусами, и ряд Фурье для четной функции с периодом 2L выглядит так:

Пусть теперь  f(x) - нечетная функция с периодом 2L, удовлетворяющая условию  f(-x) = - f(x).

Тогда для коэффициентов ее ряда Фурье находим формулы:

 , где n=1,2, . . .

Таким образом, в ряде Фурье для нечетной функции отсутствует свободный член и члены с косинусами, и ряд Фурье для нечетной функции с периодом 2L выглядит так:

Если функция f(x) разлагается в тригонометрический ряд Фурье на промежутке то

, где ,

,

,

Если f(x) разлагается в тригонометрический ряд Фурье на [0,L], то доопределив заданную функцию f(x) соответствующим образом на [-L,0]; далее периодически продолжив на (T=2L), получим новую функцию, которую разлагаем в тригонометрический ряд Фурье.

Для разложения в ряд Фурье непериодической функции, заданной на конечном произвольном промежутке [a,b], надо : доопределить на [b,a+2L] и периодически продолжить, либо доопределить на [b-2L,a] и периодически продолжить.

Ряд Фурье по любой ортогональной системе функций

Последовательность функций  непрерывных на отрезке [a,b], называется ортогональной системой функции на отрезке [a,b], если все функции последовательности попарно ортогональны на этом отрезке, т. е. если

Система называется ортогональной и нормированной (ортонормированной) на отрезке [a,b],

если выполняется условие

Пусть теперь f(x) - любая функция непрерывная на отрезке [a,b]. Рядом Фурье такой функции f(x) на отрезке [a,b] по ортогональной системе называется ряд:

коэффициенты которого определяются равенством:

n=1,2,...

Если ортогональная система функций на отрезке [a,b] ортонормированная, то в этом случаи

 где n=1,2,...

Пусть теперь f(x) - любая функция, непрерывная или имеющая конечное число точек разрыва первого рода на отрезке [a,b]. Рядом Фурье такой функции f(x) на томже отрезке

по ортогональной системе называется ряд:

,

Если ряд Фурье функции f(x) по системе (1) сходится к функции f(x) в каждой ее точке непрерывности, принадлежащей отрезку [a,b]. В этом случае говорят что f(x) на отрезке [a,b] разлагается в ряд по ортогональной системе (1).

Комплексная форма ряда Фурье

Выражение  называется комплексной формой ряда Фурье функции f(x), если  определяется равенством

, где  

Переход от ряда Фурье в комплексной форме к ряду в действительной форме и обратно осуществляется с помощью формул:

 (n=1,2, . . .)

Задача о колебании струны

Пусть в состоянии равновесия натянута струна длинной l с концами x=0 и x=l. Предположим, что струна выведена из состояния равновесия и совершает свободные колебания. Будем рассматривать малые колебания струны, происходящие в вертикальной плоскости.

При сделанных выше допущениях можно показать, что функция u(x,t) , характеризующая положение струны в каждый момент времени t, удовлетворяет уравнению

(1) , где а - положительное число.

Наша з а д а ч а - найти функцию u(x,t) , график которой дает форму струны в любой момент времени t, т. е. найти решение уравнения (1) при граничных:

(2)

и начальных условиях:

(3)

Сначала будем искать решения уравнения (1), удовлетворяющие граничным условиям(2). Нетрудно увидеть, что u(x,t)0 является решением уравнения (1), удовлетворяющие граничным условиям(2). Будем искать решения, не равные тождественно 0, представимые в виде произведения u(x,t)=X(x)T(t), (4) , где , .

Подстановка выражения (4) в уравнение (1) дает:

Из которого наша задача сводится к отысканию решений уравнений:

Используя это условие X(0)=0, X(l)=0, докажем, что  отрицательное число, разобрав все случаи.

a) Пусть Тогда X”=0 и его общее решение запишется так:

откуда  и ,что невозможно , так как мы рассматриваем решения, не обращающиеся тождественно в нуль.

б) Пусть . Тогда решив уравнение

получим , и, подчинив, найдем, что

в)  Если  то

Уравнения имеют корни :

получим:

где  -произвольные постоянные. Из начального условия найдем:

откуда , т. е.

(n=1,2,...)

(n=1,2,...).

Учитывая это, можно записать:

 (n=1,2,...).

и, следовательно

, (n=1,2,...),

но так как A и B разные для различных значений n то имеем

, (n=1,2,...),

где  и  произвольные постоянные, которые попытаемся определить таким образом, чтобы ряд удовлетворял уравнению (1), граничным условиям (2) и начальным условиям (3).

Итак, подчиним функцию u(x,t) начальным условиям, т. е. подберем  и  так , чтобы выполнялись условия

Эти равенства являются соответственно разложениями функций  и  на отрезки [0, l] в ряд Фурье по синусам. ( Это значит что коэффициенты будут вычисляться как для нечетной функций). Таким образом, решение о колебании струны с заданным граничными и начальными условиями дается формулой

где

 (n=1,2,...)

Интеграл Фурье

Достаточные условия представимости функции в интеграл Фурье.

Для того, чтобы f(x) была представлена интегралом Фурье во всех точках непрерывности и правильных точках разрыва, достаточно:

1) абсолютной интегрируемости на

(т.е. интеграл сходится)

2) на любом конечном отрезке [-L, L] функция была бы кусочно-гладкой

3) в точках разрыва функции, ее интеграл Фурье определяется полусуммой левого и правого пределов в этих точках, а в точках непрерывности к самой функции f(x)

Интегралом Фурье функции f(x) называется интеграл вида:

, где ,

.

Интеграл Фурье для четной и нечетной функции

Пусть f(x)-четная функция, удовлетворяющая условиям представимости интегралом Фурье.

Учитывая, что , а также свойство интегралов по симметричному относительно точки x=0 интервалу от четных функций, из равенства (2) получаем:

(3)

Таким образом, интеграл Фурье четной функции f(x) запишется так:

 ,

где a(u) определяется равенством (3).

Рассуждая аналогично, получим, для нечетной функции f(x) :

(4)

и, следовательно, интеграл Фурье нечетной функции имеет вид:

 ,

где b(u) определяется равенством (4).

Комплексная форма интеграла Фурье

 , (5)

где

.

Выражение в форме (5) является комплексной формой интеграла Фурье для функции f(x).

Если в формуле (5) заменить c(u) его выражением, то получим:

, где правая часть формулы называется двойным интегралом

Фуpье в комплексной форме. Переход от интеграла Фурье в комплексной форме к интегралу

в действительной форме и обратно осуществим с помощью формул:

Формулы дискретного преобразования Фурье

Обратное преобразование Фурье.

где n=1,2,... , k=1,2,...

Дискретным преобразованием Фурье - называется N-мерный вектор

при этом, .

Разложение четной функции в ряд

Данную выше функцию сделаем четной(см. теорию), и рассмотрим ее на промежутке от 0 до  смотри рис.2

Рис.2

поэтому разложение по косинусу имеет вид:

Из разложения видим что при n=2 дробь теряет смысл поэтому отдельно рассмотрим разложения первого и второго коэффициента суммы:

На основе данного разложения запишем функцию в виде ряда:

и вообще

.

Найдем первые пять гармоник для найденного ряда:

1-ая гармоника

2-ая гармоника

3-я гармоника

4-ая гармоника

5-ая гармоника

А теперь рассмотрим сумму этих гармоник F(x):

Комплексная форма ряда по косинусам

 Для рассматриваемого ряда получаем коэффициенты (см. гл.1)

,

но при не существует, поэтому рассмотрим случай когда n=+2 :

(т.к.  см. разложение выше)

и случай когда n=-2:

 ( т.к. )

И вообще комплексная форма:

или

или

Разложение нечетной функции в ряд

Аналогичным образом поступаем с данной функцией F(x), продлевая ее как нечетную, и рассматриваем на промежутке от 0 до  смотри рис.3

Рис.3

поэтому разложение по синусам имеет вид:

Из данного разложения видно, что при n=2 произведение неопределенно (можно не учесть часть суммы), поэтому рассмотрим два отдельных случая.

При n=1:

,

и при n=2:

 Учитывая данные коэффициенты имеем разложения в виде

и вообще

Найдем первые пять гармоник для данного разложения:

1-ая гармоника

2-ая гармоника

3-ая гармоника

4-ая гармоника

5-ая гармоника

И просуммировав выше перечисленные гармоники получим график функции F(x)

Вывод:

На основании главы 2, разложение функции в тригонометрический ряд(рис.1), разложение в ряд по косинусам(рис.2), разложение по синусам(рис.3), можно заключить, что данная функция разложима в тригонометрический ряд и это разложение единственное. И проанализировав суммы первых пяти гармоник по каждому разложению можно сказать, что наиболее быстрее к заданному графику достигается при разложении по синусам.

Комплексная форма ряда по синусам

Основываясь на теорию (см. гл.1) для ряда получаем:

 ,  (т.к. )

тогда комплексный ряд имеет вид:

ГЛАВА 3 ПРЕДСТАВЛЕНИЕ ФУНКЦИИ ИНТЕГРАЛОМ ФУРЬЕ

Проверка условий представимости

Данную ранее функцию (см. гл. 2) доопределим на всей прямой от  до  как равную нулю(рис.4).

Рис.4

а) f(x)-определенна на R;

б) f(x) возрастает на , f(x) убывает на  - кусочнo-монотонна.

f(x) = const на  и .

 < .

Интеграл Фурье

В соответствии с теорией (см. гл. 1) найдем a(u) и b(u):

;

.

И в конечном варианте интеграл Фурье будет выглядеть так:

Интеграл Фурье в комплексной форме

Теперь представим интеграл Фурье в комплексной форме. На основе выше полученных разложений имеем:

,

,

а теперь получим интеграл в комплексной форме:

.

ГЛАВА 4 ПРЕДСТАВЛЕНИЕ ФУНКЦИИ ПОЛИНОМОМ ЛЕЖАНДРА

Основные сведения

Функцию можно разложить в ортонормированной системе пространства X=[-1,1] , причем полиномы получим, если проинтегрируем выражение:

Соответственно получим для n=0,1,2,3,4,5, ... :

. . . . . . . . . .

Для представления функции полиномом Лежандра необходимо разложить ее в ряд:

,

где и разлагаемая функция должна быть представлена на отрезке от -1 до 1.

Преобразование функции

Наша первоначальная функция имеет вид (см. рис. 1):

т. к. она расположена на промежутке от 0 до  необходимо произвести замену, которая поместит функцию на промежуток от -1 до 1.

Замена:

и тогда F(t) примет вид

или

Вычисление коэффициентов ряда

Исходя из выше изложенной формулы для коэффициентов находим:

Далее вычисление коэффициентов осложнено, поэтому произведем вычисление на компьютере в системе MathCad и за одно проверим уже найденные:

Рассмотрим процесс стремления суммы полинома прибавляя поочередно - слагаемое:

А теперь рассмотрим график суммы пяти полиномов F(t) на промежутки от -1 до 0 (рис.5):

 

Рис. 5

т.к. очевидно, что на промежутке от 0 до 1 будет нуль.

Вывод:

На основе расчетов гл.2 и гл.4 можно заключить, что наиболее быстрое стремление из данных разложений к заданной функции достигается при разложении функции в ряд.

ГЛАВА 5 ДИСКРЕТНЫЕ ПРЕОБРАЗОВАНИЯ ФУРЬЕ

Прямое преобразование

Для того, чтобы произвести прямое преобразование, необходимо задать данную функцию (гл. 1, рис. 1) таблично. Поэтому разбиваем отрезок от 0 до на N=8 частей, так чтобы приращение:

В нашем случае , и значения функции в k-ых точках будет:

для нашего случая (т.к. a=0).

Составим табличную функцию:

k

0 1 2 3 4 5 6 7

0 0.785 1.571 2.356 3.142 3.927 4.712 5.498

0 0.707 1 0.707 0 0 0 0

Табл. 1

Прямым дискретным преобразованием Фурье вектора называется . Поэтому найдем :

, n=0,1,...,N-1

Сумму находим только до 3 слагаемого, т.к. очевидно, что от 4 до 7 к сумме суммируется 0 (т.к. значения функции из таблицы равны нулю).

Составим таблицу по прямому дискретному преобразованию:

зная, , где

, где

n

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

2,4 2 1 0 0.4 0 1 2

0.318 0.25 0.106 0 0.021 0 0.009 0

Табл. 2

Амплитудный спектр

Обратное преобразование

Обратимся к теории гл.1. Обратное преобразование- есть функция :

В нашем случаи это:

А теперь найдем модули  и составим таблицу по обратным дискретным преобразованиям:

k

0 1 2 3 4 5 6 7

0 0.785 1.571 2.356 3.142 3.927 4.712 5.498

0 0.707 1 0.707 0 0 0 0

0 0.708 1 0.707 8e-4 5e-5 5e-4 3e-4

Табл. 3

Из приведенной таблицы видно, что  приближенно равно .

Построим графики используя табл.3, где - это F(k), а - это f(k) рис. 6 :

 

Рис. 6

Вывод:

На основе проделанных расчетов можно заключить, что заданная функция представима в виде тригонометрического ряда Фурье, а также интеграла Фурье, полинома Лежандра и дискретных преобразований Фурье. О последнем можно сказать, что спектр (рис. 6) прямого и обратного преобразований совпадают с рассматриваемой функцией и расчеты проведены правильно.

Этап I


Информация о работе «Некоторые главы мат. анализа»
Раздел: Математика
Количество знаков с пробелами: 26851
Количество таблиц: 9
Количество изображений: 36

Похожие работы

Скачать
41047
6
3

... управленческие решения, которые смогут обеспечить рациональное использование материальных ресурсов, снижение затрат, повышение рентабельности и создание условий для роста производства. [12, с. 27] ГЛАВА 2. Анализ использования материальных ресурсов ООО «ЖКХ «Сервис»   2.1 Краткая экономическая характеристика объекта исследования (ООО «ЖКХ «Сервис»)   Жилищно-коммунальное хозяйство имеет ...

Скачать
111615
38
3

... по данным публичной финансовой отчетности, составляют: - анализ абсолютных показателей прибыли; - анализ относительных показателей рентабельности; - анализ финансового состояния, рыночной устойчивости, ликвидности баланса, платежеспособности предприятия; - анализ эффективности использования заемного капитала; - экономическая диагностика финансового состояния предприятия и рейтинговая оценка ...

Скачать
321551
1
2

... работы организации и ее подразделений; изыскание финансовых возможностей улучшения обслуживания контингента предприятий. Источники информации для экономического анализа - это формы бухгалтерской отчетности, данные бухгалтерского учета, статистическая отчетность и другие источники, аналогичные применяемым в экономическом анализе предприятий. Под предметом экономического анализа понимаются ...

Скачать
157545
40
4

... и т.д. Поэтому первостепенной задачей в этом направлении является рациональное использование рабочего времени при эксплуатации ведущего оборудования. Далее при анализе организации основного производства необходимо рассчитать следующие показатели: Частные показатели технического уровня производства Коэффициент механизации и автоматизации производства Коэффициент использования технологических ...

0 комментариев


Наверх