2.1. Постановка задачи
Пусть динамическая система с дискретным временем дана в следующем виде:
(2.1.1)
где вектор состояния , матрица переходов из состояния в состояние , и - случайный процесс, представляющий собой белый гауссовый шум с нулевым средним и ковариацией , т.е. . Пусть множество наблюдений задается уравнением:
(2.1.2)
где вектор наблюдения , матрица наблюдений , и - шум: .
Пусть также, матрицы и являются функциями неизвестного векторного параметра .
Оценкой максимального правдоподобия является такое значение оцениваемых параметров , которое максимизирует вероятность события, при котором наблюдения, сгенерированные с подстановкой оцениваемых параметров, совпадают с действительными значениями наблюдений . Эта процедура эквивалентна минимизации обратного логарифма функции плотности условной вероятности, т.е. обратный логарифм функции правдоподобия представляется как:
(2.1.3)
где и - вычисляются согласно схеме фильтра Калмана следующим образом:
(2.1.4)
где есть ковариационная матрица ошибки экстраполяционной оценки.
Запишем другие характеристики фильтра Калмана, которые нам понадобятся в дальнейшем:
Матрица Калмана:
(2.1.5)
Матрица ковариаций измененной по последним данным ошибки:
(2.1.6)
Невязка:
(2.1.7)
Измененная оценка:
(2.1.8)
Вычисление оценки максимального правдоподобия может быть осуществлено итеративно по следующей формуле:
(2.1.9)
где - оцениваемый векторный параметр; - индекс, определяющий номер итерации; - информационная матрица Фишера; - градиент обратного логарифма функции максимального правдоподобия.
Стоит заметить, что итеративные алгоритмы, подобные (2.1.9), в среднем сходятся за меньшее число шагов, чем те алгоритмы, которые включают в себя только вычисления . С другой стороны, алгоритмы, содержащие и , требуют больше вычислений на каждом шаге.
Модель наблюдений, в случае ККИФ, выглядит следующим образом:
(2.1.10)
где - ортогональная матрица такая, что - верхнетреугольная. Также, согласно (2.1.2) имеют вид:
(2.1.11)
где
(2.1.12)
тогда шум наблюдения имеет единичную ковариацию, что удовлетворяет ККИФ.
Шаг предсказывания ККИФ, описывается следующим образом:
(2.1.13)
где матрица представляется уравнением (1.4.4), - ортогональная матрица такая, что матрица является верхнетреугольной.
Информационным массивом ККИФ является массив данных . Он соотносится с оценкой состояния фильтра Калмана и матрицей ковариации ошибки оценивания следующими соотношениями:
(2.1.14)
(2.1.15)
0 комментариев