1.3. Задача нахождения приближенного решения не­корректно поставленной задачи вида

 Az = и, иÎ U,  (1; 3,1)

в естественном классе элементов F является практически недоопределенной. Эта задача является некорректно поставленной, например, в случаях, когда А — вполне непрерывный оператор. Тогда обрат­ный ему оператор A-1 вообще говоря, не будет непрерывным на U и решение уравнения (1; 3,1) не будет устойчивым к малым изменениям правой части и (в метрике пространства U). Исход­ными данными здесь являются правая часть уравнения u и оператор А.

Предположим, что оператор А нам известен точно, а правая часть уравнения (1; 3,1) известна с точностью d, т. е. вместо ее точного значения uT нам известны элемент и1 и число d такие, что rU(uT,u1)<= d. По этим данным, т. е. по (u1, d), требуется найти такой элемент zd , ко­торый стремился бы (в метрике F) к zT при d®0. Та­кой элемент мы будем называть приближенным (к zT) решением уравнения Az = и1.

Элементы zÎF, удовлетворяющие условию rU(Az, и1)<= d, будем называть сопоставимыми по точности с ис­ходными данными (и1, d). Пусть Qd—совокупность всех таких элементов z ÎF. Естественно приближенные ре­шения уравнения Az=и1 искать в классе Qd элементов z , сопоставимых по точности с исходными данными

1, d ).

Однако в ряде случаев этот класс элементов слишком широк. Среди этих элементов есть такие, которые могут сильно отличаться друг от друга ( в метрике пространства F ). Поэтому не все элементы класса Qdможно брать в качестве приближенного решения уравнения (1;3,1).

2.   МЕТОД ПОДБОРА. КВАЗИРЕШЕНИЯ

 

Возможность определения приближенных решений некорректно поставленных задач, устойчивых к малым изменениям исходных данных, основывается на исполь­зовании дополнительной информации относительно реше­ния. Возможны различные типы дополнительной инфор­мации.

В первой категории случаев дополнительная инфор­мация, носящая количественный характер, позволяет сузить класс возможных решений, например, до ком­пактного множества, и задача становится устойчивой к малым изменениям исходных данных. Во второй катего­рии случаев для нахождения приближенных решений, устойчивых к малым изменениям исходных данных, ис­пользуется лишь качественная информация о решения (например, информация о характере его гладкости).

В настоящей главе будет рассмотрен метод подбора, имеющий широкое практическое применение, метод квазирешения, а также метод замены исходного уравне­ния близким ему и метод квазиобращения. В качестве некорректно поставленной задачи мы будем рассматри­вать задачу решения уравнения

 Az=u (2; 0,1)

относительно z, где uÎU, zÎF, U и F—метрические пространства. Оператор А отображает F на U. Предпо­лагается, что существует обратный оператор А-1, но он не является, вообще говоря, непрерывным.

Уравнение (2; 0,1) с оператором А, обладающим ука­занными свойствами, будем называть операторным урав­нением первого рода, или, короче,— уравнением пер­вого рода.

 

2.1. Метод подбора решения некорректно поставленных задач

 

2.1.1. Широко распространенным в вычислительной практике способом приближенного решения уравнения (2; 0,1) является метод подбора. Он состоит в том, что для элементов z некоторого заранее заданного подклас­са возможных решений М (МÎF) вычисляется опера­тор Az, т. е. решается прямая задача. В качестве при­ближенного решения берется такой элемент z0 из мно­жества М, на котором невязка rU(Az,u) достигает мини­мума, т. е.

rU(Az0,u)=inf rU(Az,u)

 zÎM

Пусть правая часть уравнения (2;0,1) известна точ­но, т. е. и=uT, и требуется найти его решение zT. Обычно в качестве М берется множество элементов z, зависящих от конечного числа параметров, меняющихся в ограниченных пределах так, чтобы М было замкнутым множеством конечномерного пространства. Если искомое точное решение zT уравнения (2; 0,1) принадлежит мно­жеству М, то  и достигается эта нижняя граница на точном решении zT. Если уравнение (2;0,1) имеет единственное решение, то элемент z0, минимизирующий rU(Az,и), определен однозначно.

Практически минимизация невязки rU(Az,и) произ­водится приближенно и возникает следующий важный вопрос об эффективности метода подбора, т. е. о возмож­ности как угодно приблизиться к искомому точному ре­шению.

Пусть {zn} — последовательность элементов, для ко­торой rU(Azn,u) ®0 при n®¥. При каких условиях можно утверждать, что при этом и rF(zn,zT) ®0, т. е. что {zn} сходится к zT?

Это вопрос обоснования эффективности метода подбора.

2.1.2. Стремление обосновать успешность метода подбора привело к установлению общефункциональных требова­ний, ограничивающих класс возможных решений М, при которых метод подбора является устойчивым и zn®zT. Эти требования заключаются в компактности мно­жества М и основываются на приводимой ниже извест­ной топологической лемме.

Лемма. Пусть метрическое пространство F отобра­жается на метрическое пространство U и Uo — образ мно­жества Fo, FoÌ F, при этом отображении. Если отобра­жение F®U непрерывно, взаимно однозначно и множест­во Fo компактно на F, то обратное отображение Uo®Fo множества Uo на множество Fo также непрерывно по мет­рике пространства F.

Доказательство. Пусть z — элементы множества F (zÎF), а u—элементы множества U (uÎU). Пусть функция u=j(z) осуществляет прямое отображение F®U, а функция z=y(u)—обратное отображение U®F.

Возьмем произвольный элемент u0 из Uo. Покажем, что функция y(u) непрерывна на u0. Предположим, что это неверно. Тогда существует такое число e1 > 0, что для всякого d > 0 найдется элемент и1 из Uo, для которого rU1, и0) <d, в то время как rF(z1,z0)>= e1. Здесь z=y(u1), z0=y(u0) и z1ÎFo, z0ÎF0.

Возьмем последовательность {dn} положительных чи­сел dn , сходящуюся к нулю при п®¥. Для каждого dn найдется элемент un1 из Uo, для которого rUn1, и0)< dn , но rF(zn1,z0)>= e1 , где zn1=y(un1). Очевидно, последова­тельность {un1} сходится к элементу u0. Так как zn1 при­надлежат компактному на F множеству Fo, то из после­довательности {zn1} можно выбрать подпоследовательность {Z1nk}, сходящуюся по метрике F к некоторому элементу z0 ÎF. При этом z01¹z0 , так как для всякого nk rF(Z1nk,z0)>= e1 , следовательно и rF(z10,z0)>= e1 . Этой подпоследовательности {Z1nk} отвечает последователь­ность элементов u1nk= j (Z1nk) из Uo, сходящаяся к u10= j(z10) и являющаяся подпоследовательностью по­следовательности {u1n}. Так как последовательность {u1n} сходится к и0 =j(z0), то u10=j(z10)=u0=j(z0) , т. е. j(z0)= j(z10). В силу взаимной однозначности отоб­ражения F®U z10=z0, что противоречит ранее установ­ленному неравенству z10¹z0. Лемма доказана.

 Эту лемму можно сформулировать короче.

Если отображение FoàUo компакта Fo на множество Uo взаимно однозначно и непрерывно, то обратное отобра­жение UoàFo также непрерывно.

Эквивалентность этих формулировок следует из того, что замыкание F*0 множества Fo, компактного на F, явля­ется компактом.

Таким образом, минимизирующая последовательность {zn} в методе подбора сходится к zT при nà¥, если:

а)zT принадлежит классу возможных решений М;

б) множество М — компакт.

Пусть оператор А непрерывен и вместо точной правой части uT мы имеем элемент ud такой, что rU(ud,uT )<= d, причем ud принадлежит множеству AM (образу множест­ва М при отображении его с помощью оператора A) и М есть компакт. Пусть {dn} — последовательность поло­жительных чисел таких, что dn à0 при nàоо. Для каж­дого п методом подбора можно найти такой элемент zdn , что rU(A zdn ,ud)<=dn . Элементы zdn будут близки к ре­шению zT уравнения Az=uT. В самом деле, при отобра­жении с помощью непрерывного оператора образ AM компакта М есть компакт и, следовательно, по лемме обратное отображение, осуществляемое оператором A-1, непрерывно на AM. Так как

rU(A zdn ,u)<= rU(A zn ,ud)+rU(ud,uT),

то

rU(A zdn ,uT)<=dn+d=gdn.

Из этого неравенства и из непрерывности обратного отображения АМ à М следует, что rF(zdn ,zT)<= e( gdn) , причем e( gdn)à0 при gdnà0. Таким образом, при нахож­дении приближения zdn к zT надо учитывать уровень по­грешности d правой части ud.

2.1.3. На основе изложенных соображений М. М. Лав­рентьев сформулировал понятие корректности по Тихонову. В применении к уравнению (2; 0,1) задача на­зывается корректной по Тихонову, если известно, что для точного значения u=uT существует единственное реше­ние zT уравнения (2; 0,1), AzT=uT, принадлежащее за­данному компакту М. В этом случае оператор А-1 непре­рывен на множестве N=AM и, если вместо элемента uT нам известен элемент ud такой, что rU( uT, ud)<=d и udÎN, то в качестве приближенного решения уравнения (2; 0,1) с правой частью u= ud можно взять элемент zd=A-1ud. При dà0 (udÎN) zd будет стремиться к zT. Множество F1 (F1 Ì F), на котором задача нахождения решения уравнения (2; 0,1) является корректно постав­ленной, называют классом корректности. Так, если опера­тор А непрерывен и осуществляет взаимно однозначное отображение, то компакт М, к которому принадлежит zT, является классом корректности для уравнения (2; 0,1). Таким образом, если задача (2; 0,1) корректна по Тихо­нову и правая часть уравнения uÎAM, то метод подбора с успехом может быть применен к решению такой задачи. На первый вопрос дан исчерпывающий ответ.

Рассмотрим задачу решения интегрального уравнения Фредгольма первого рода

(2;1,1)

на множестве М1 монотонно убывающих (возрастающих) и равномерно ограниченных функций |z(s)|<=B. Она корректна по Тихонову, так как множество M1 — компакт в пространстве L2.

Действительно, возьмем любую последовательность E= {z1(s), z2(s), .... zn(s), ...} из M1. Согласно теореме Хелли о выборе существуют подпоследовательность

E1 = {Zn1 (s), Zn2 (s), ..., Znk (s), ...},

последовательности Е и функция z*(s) из множества M1, z*(s) ÎL2, такие, что

всюду, кроме, может быть, счетного множества точек разрыва функции z*(s). Из поточечной сходимости под­последовательности Е1 к функции z*(s) всюду, кроме, может быть, счетного множества точек, следует, как известно, сходимость подпоследовательности E1 к функ­ции z*(s) по метрике L2.

Таким образом, в качестве приближенного решения на множестве М1 уравнения (2; 1,1) с приближенно извест­ной правой частью u1 Î АМ1 можно брать точное решение этого уравнения с правой частью u=u1 . Эта послед­няя задача эквивалентна задаче нахожде­ния на множестве M1 функции, минимизирующей функ­ционал

 N[z,u1]=|| A1z – u1 ||2L2 .

Пусть rU(uT, u1)<= d. Тогда, очевидно, в качестве при­ближенного решения уравнения (2; 1,1) можно брать функцию zd, для которой

|| A1zd – u1 ||2L2<= d2 . (2;1,2)

Если заменить интегральный оператор A1z интеграль­ной суммой на фиксированной сетке с n узлами и обозна­чить значения искомой функции в узловых точках через zi , то задача построения приближенного решения уравне­ния (2; 1,1) сведется к задаче нахождения конечномер­ного вектора, минимизирующего функционал N[z,и1] и удовлетворяющего неравенству (2; 1,2).

В ряде других случаев компактные классы коррект­ности можно указать эффективно, что дает возможность строить устойчивые приближенные решения.

2.1.4. В силу погрешности исходных данных элемент и может не принадлежать множеству AM. В этих условиях уравнение (2; 0,1) не имеет решения (классического) и возникает вопрос: что надо понимать под приближенным решением уравнения (2; 0,1)?

В этом случае вводится понятие квазирешения и метод подбора при условии компактности множества М позво­ляет найти приближение к квазирешению. В следующем параграфе вопрос о квазирешении рассматривается под­робнее.

2.2. Квазирешения

2.2.1. Пусть оператор А в уравнении (2; 0,1) — вполне непрерывный. Построение устойчивого к малым измене­ниям правой части и приближенного решения уравнения (2; 0,1) по формуле

z=A-1u (2; 2,1)

возможно в тех случаях, как отмечалось в 2.1. , когда ре­шение ищется на компакте МÌF и правая часть уравне­ния принадлежит множеству N = AM.

Обычно не существует эффективных критериев, поз­воляющих установить принадлежность элемента и множеству N. Это приходится предполагать известным априори. В практических задачах часто вместо точного значения правой части иT нам известно ее приближенное значение u1, которое может не принадлежать множеству N=AM. В этих случаях нельзя строить приближенное решение уравнения (2; 0,1) по формуле (2; 2,1), так как сим­вол А-1u может не иметь смысла.

2.2.2. Стремление устранить затруднения, связанные с от­сутствием решения уравнения (2; 0,1) при неточной правой части, привело В. К. Иванова к понятию квазирешения уравнения (2; 0,1) — обобщению понятия решения этого уравнения.

Элемент z1ÎМ, минимизирующий при данном и функ­ционал rU(Az1,и) на множестве М, называется квазиреше­нием уравнения (2; 0,1) на М,

Если М — компакт, то квазирешение, очевидно, существу­ет для любого иÎU и если, кроме того, иÎAM, то ква­зирешение z1 совпадает с обычным (точным) решением уравнения (2; 0,1). Квазирешение может быть и не одно. В этом случае под квазирешенпем будем разуметь любой элемент из множества квазирешений D.

Можно указать достаточные условия, при которых квазирешение единственно и непрерывно зависит от пра­вой части и.

Напомним определение. Пусть элемент у и множество Q принадлежат пространству U. Элемент q множества Q называется проекцией элемента у на множество Q, q=Ру, если выполняется равенство

где

Теорема 1. Если уравнение Аz=u может иметь на компакте М не более одного решения и проекция каждого элемента uÎU на множество N = AM единственна, то квазирешение уравнения (2; 0,1) единственно и непре­рывно зависит от правой части u.

Доказательство. Пусть z1 — квазирешение и и1=Аz1. Очевидно, и1 есть проекция элемента u на множе­ство N = AM. По условию теоремы она определяется од­нозначно. Отсюда, в силу взаимной однозначности ото­бражения множества М на множество N, следует един­ственность квазирешения z1.

Очевидно, что z1 = А-1u=А-1Ри. Согласно лемме о непрерывности обратного отображения компакта (см. предыдущий параграф) оператор А-1 непрерывен на N. Оператор проектирования Р непрерывен на U. Поэтому А-1P — непрерывный на U оператор и, следовательно, квазирешение z1 непрерывно зависит от правой части и.

Таким образом, при переходе к квазирешению восста­навливаются все условия корректности, т. е. задача на­хождения квазирешения уравнения (2; 0,1) на компакте М является корректно поставленной.

Если условие единственности решения уравнения (2; 0,1) не выполнено, то квазирешения образуют некото­рое множество D элементов компакта М. В этом случае без упомянутых в теореме 1 ограничений на множество N имеет место непрерывная зависимость множества квази­решений D от и в смысле непрерывности многозначных отображений. Для случая, когда уравнение (2; 0,1) линейно, легко получить более общие результаты, содержащиеся в сле­дующей теореме .

Теорема 2. Пусть уравнение (2; 0,1) линейно, одно­родное уравнение Az=0 имеет только нулевое решение, множество М выпукло, а всякая сфера в пространстве U строго выпукла. Тогда квазирешение уравнения (2; 0,1) на компакте М единственно и непрерывно зависит от пра­вой части и.

Доказательство. Пусть z1 — квазирешение и u1=Az1. Так как множество М выпукло, то в силу линей­ности оператора А множество N=AM также выпукло. Очевидно, что и1 есть проекция элемента и на множество N. В силу того, что сфера в пространстве U по условию теоремы строго выпукла, проекция и определяется одно­значно. Далее доказательство завершается, как в тео­реме 1.

2.2.3. Пусть F и U — гильбертовы пространства, МÎSR — шар (|| z ||<=R ) в пространстве F и А — вполне непре­рывный линейный оператор.

В этом случае квазирешение уравнения (2; 0,1) мож­но представить в виде ряда по собственным элементам (функциям, векторам) jn оператора А*А, где А* — опе­ратор, сопряженный оператору А.

Известно, что А*А — самосопряженный положитель­ный вполне непрерывный оператор из F в F. Пусть l1>=l2>=…>=ln>=… — полная система его собственных значений, a j1, j2,…, jn,…—отвечающая им полная ортонормированная система его собственных элементов (функций, векторов). Элемент А*и можно представить в виде ряда

 (2;2,2)

В этих условиях справедлива

Теорема 3. Квазирешение уравнения (2, 0,1) на множестве SR выражается формулами:

(2;2,3)

если

  (2;2,4)

и

 

если

 (2;2,5)

Здесь b — корень уравнения

(2;2,6)

Доказательство. Квазирсшение минимизирует функционал

 rU2 (Az, u) == (Az — u, Az — u) (2;2,7)

(где (v,w ) — скалярное произведение элементов v и w из U), уравнение Эйлера для которого имеет вид

A*Az=A*u. (2;2,8)

Решение этого уравнения будем искать в виде ряда по системе {jn}:

   (2;2,9)

Подставляя этот ряд в уравнение (2; 2,8) и используя разложение (2;2,2), находим сn=bn/ln. Следователь­но, неравенство (2; 2,4) означает, что ||z||<R и речь идет о нахождении безусловного экстремума функциона­ла (2; 2,7). Ряд (2; 2,3) и будет решением задачи.

Если же выполняется неравенство (2; 2,5), то это означает, что ||z||>=R и надо решать задачу на услов­ные экстремум функционала (2; 2,7) при условии, что || z ||2 = R2. Методом неопределенных множителей Лагранжа эта задача сводится к нахождению безусловного экстремума функционала

(Аz-u, Аz-u) + b (z, z),

а последняя — к решению отвечающего ему уравнения Эйлера A*Az+bz=А*и. Подставляя сюда z в виде ряда (2; 2,9) и используя разложение (2; 2,2), находим

Параметр b определяем из условия || z ||2 = R2 , которое эквивалентно (2; 2,6).


Информация о работе «Методы решения некорректно поставленных задач»
Раздел: Математика
Количество знаков с пробелами: 57275
Количество таблиц: 7
Количество изображений: 0

Похожие работы

Скачать
39390
0
2

... , действующий из нормированного пространства Z в нормированное пространство U. В 1963 г. А.Н.Тихонов дал знаменитое определение регуляризирующего алгоритма (РА), которое лежит в основе современной теории некорректно поставленных задач. Определение. Регуляризирующим алгоритмом (регуляризирующим оператором)  называется оператор, обладающий двумя следующими свойствами: 1)  определен для любых δ ...

Скачать
139305
0
14

... при решении предусмотренных задач одна из эталонных схем (рабочая) копируется в рабочие файлы. Для моделирования, анализа и хранения режимов создана база режимов (до 12 режимов). Предусмотрена возможность записи произвольного режима, являющегося результатом решения одной из задач, в базу режимов. Все расчеты, включая и формирование отображаемых на дисплеях кадров, производятся на ЭВМ ИВП. В ИВП ...

Скачать
15935
0
12

... из-за дефектов производства, технологии изготовления, загрязнения поверхности, погрешности измерения и обработки экспериментальной информации. Влияние погрешностей исходной информации на решение обратной задачи теплопроводности оценивалось с помощью метода статистических испытаний Монте – Карло / 5-8 /. Анализ результата статистического моделирования решения обратной задачи позволяет установить ...

Скачать
26259
2
288

... и получим . ЧТД. Пример. Вычислим значение , где . Действие Содержимое НГ ВГ (1) x 2.57 2.58 (2) y 1.45 1.46 (3) z 8.33 8.34 (1)+(2) x+y 4.02 4.04 (1)-(2) x-y 1.11 1.13 9.24 9.43 2.28 2.35 §8. Математические модели и численные методы.Велика роль математики в решении задач реального мира. Физиков математика интересует не сама по ...

0 комментариев


Наверх