3.1. Понятие регуляризирующего оператора
3.1.1. Пусть оператор А в уравнении (3; 0,1) таков, что обратный ему оператор
A-1 не является непрерывным на множестве AF и множество возможных решений F не является компактом.
Пусть zT есть решение уравнения Az =uT, т. е. AzT=uT. Часто вместо uT мы имеем некоторый элемент ud и известное число d > 0 такие, что rU(ud,uT)<= d, т. е. вместо точных исходных данных (uT,А) мы имеем приближенные исходные данные (ud, А) и оценку их погрешности d. Задача состоит в том, чтобы по известным исходным данным (ud, A, d) найти приближение zd к элементу zt, обладающее свойством устойчивости к малым изменениям ud. Очевидно, что в качестве приближенного решения zd уравнения (3; 0,1) нельзя брать точное решение этого уравнения с приближенной правой частью и= ud, т. е. элемент zT, определяемый по формуле
zd=A-1 ud
так как оно существует не для всякого элемента u ÎU и не обладает свойством устойчивости к малым изменениям правой части и.
Числовой параметр d характеризует погрешность правой части уравнения (3;0,1). Поэтому представляется естественным определить zd с помощью оператора, зависящего от параметра, значения которого надо брать согласованными с погрешностью d исходных данных ud. Эта согласованность должна быть такой, чтобы при dà0, т. е. при приближении (в метрике пространства U) правой части ud уравнения (3; 0,1) к точному значению uT, приближенное решение zd стремилось бы (в метрике пространства F) к искомому точному решению zt уравнения AzT =uT.
Пусть элементы zT Î F и uT Î U связаны соотношением AzT = uT.
Определение 1. Оператор R(и, d), действующий из пространства U в пространство F, называется регуля-ризирующим для уравнения Az = и (относительно элемента uT), если он обладает свойствами:
1) существует такое число d1 > 0, что оператор R(u, d) определен для всякого d, 0<=d<=d1, и любого udÎU такого, что
rU(ud,uT)<= d;
2) для всякого e > 0 существует d0=d0(e, ud)<=d1 такое, что из неравенства
rU(ud,uT)<= d<= d0;
следует неравенство
rF(zd,zT)<= e,
где
zd=R(ud,d).
Здесь не предполагается, вообще говоря, однозначность оператора R(u,d). Через zd обозначается произвольный элемент из множества {R(ud,d)} значений оператора R(ud,d).
3.1.2. В ряде случаев целесообразнее пользоваться другим определением регуляризирующего оператора (P.O.).
Определение 2. Оператор R(u, a), зависящий от параметра a и действующий из U в F, называется регуляризирующим для уравнения Az=и (относительно элемента uT), если он обладает свойствами:
1) существуют такие числа d1>0, a1>0, что оператор R(u, a ) определен для всякого a, принадлежащего промежутку (0, a1), и любого uÎU, для которого
rU(u,uT)<=d1;
2) существует такой функционал a=a(u, d), определенный на множестве Ud1º{u; r(u,uT)<= d1} элементов иÎU, что для любого e > 0 найдется число d(e)<=d1 такое, что если u1ÎU и rU(u1,uT)<= d<= d(e), то
rF(za,zT)<= e , где
za=R(u1, a(u1,d)).
В этом определении не предполагается однозначность оператора R(u1, a(u1,d)). Следует отметить, что при a= d получаем определение 1 .
3.1.3. Если rU(ud,uT)<= d, то известно, что в качестве приближенного решения уравнения (3; 0,1) с приближенно известной правой частью ud можно брать элемент za=R(d, a), полученный с помощью регуляризирующего оператора R(u, a ), где a=a(ud)=a1(d) согласовано с погрешностью исходных данных ud. Это решение называется регуляризованным решением уравнения (3; 0,1). Числовой параметр a называется параметром регуляризации. Очевидно, что всякий регуляризирующий оператор вместе с выбором параметра регуляризации a, согласованного с погрешностью исходных данных ud, a=a(ud), определяет устойчивый к малым изменениям правой части и метод построения приближенных решений уравнения (3;0,1). Если известно, что rU(ud,uT)<= d, то согласно определению регуляризирующего оператора можно так выбрать значение параметра регуляризации a=a(ud) ,
что при dà0 регуляризованное решение R(ud,a(ud)) стремится (в метрике F) к искомому точному решению zT, т. е. rF(zT,za(ud)). Это и оправдывает предложение брать в качестве приближенного решения уравнения (3; 0,1) регуляризованное решение.
Таким образом, задача нахождения приближенного решения уравнения (3; 0,1), устойчивого к малым изменениям правой части, сводится:
а) к нахождению регуляризирующих операторов;
б) к определению параметра регуляризации a по дополнительной информации о задаче, например, по величине погрешности, с которой задается правая часть ud.
Описанный метод построения приближенных решений называется методом регуляризации.
... , действующий из нормированного пространства Z в нормированное пространство U. В 1963 г. А.Н.Тихонов дал знаменитое определение регуляризирующего алгоритма (РА), которое лежит в основе современной теории некорректно поставленных задач. Определение. Регуляризирующим алгоритмом (регуляризирующим оператором) называется оператор, обладающий двумя следующими свойствами: 1) определен для любых δ ...
... при решении предусмотренных задач одна из эталонных схем (рабочая) копируется в рабочие файлы. Для моделирования, анализа и хранения режимов создана база режимов (до 12 режимов). Предусмотрена возможность записи произвольного режима, являющегося результатом решения одной из задач, в базу режимов. Все расчеты, включая и формирование отображаемых на дисплеях кадров, производятся на ЭВМ ИВП. В ИВП ...
... из-за дефектов производства, технологии изготовления, загрязнения поверхности, погрешности измерения и обработки экспериментальной информации. Влияние погрешностей исходной информации на решение обратной задачи теплопроводности оценивалось с помощью метода статистических испытаний Монте – Карло / 5-8 /. Анализ результата статистического моделирования решения обратной задачи позволяет установить ...
... и получим . ЧТД. Пример. Вычислим значение , где . Действие Содержимое НГ ВГ (1) x 2.57 2.58 (2) y 1.45 1.46 (3) z 8.33 8.34 (1)+(2) x+y 4.02 4.04 (1)-(2) x-y 1.11 1.13 9.24 9.43 2.28 2.35 §8. Математические модели и численные методы.Велика роль математики в решении задач реального мира. Физиков математика интересует не сама по ...
0 комментариев