2.3. Приближенное нахождение квазирешений

В предыдущем параграфе мы видели, что нахождение квазирешения связано с нахождением элемента в беско­нечномерном пространстве. Для приближенного нахожде­ния квазирешения естественно переходить к конечномер­ному пространству. Можно указать достаточно общий под­ход к приближенному нахождению квазирешений урав­нения (2; 0,1) , в котором А—вполне непре­рывный оператор.

Будем полагать, что выполнены указанные в 2.2. дос­таточные условия существования единственного квазире­шения на заданном множестве М, т. е. полагаем, что множество М — выпуклый компакт и сфера в пространст­ве U строго выпукла. Пусть

M1 Ì M2 Ì...Ì Mn Ì...

— возрастающая цепочка компактных замкнутых множеств Мn такая, что замыкание их объединения  совпадает с М. Квазирешение уравнения (2; 0,1) сущест­вует на каждом множестве Мn . Но оно может быть не единственным. Обозначим через Тn совокупность всех квазирешений на множестве Мn .

Покажем, что в качестве приближения к квазиреше­нию z1 на множестве М можно брать любой элемент z1n из Тn . При этом

Пусть Nn = АМn и Вn — множество проекций элемен­та и на множество Nn . Очевидно, что Вn = АТn и N1 Í N2 Í …Í Nn; тогда

r U(u,N1)>= …>=r U (u,Nn)>=… r U (u,N)= r U (u,Az1) . (2;3,1)

Так как множество всюду плотно на N, то для всякого e >0 найдется такое число n0(e), что для всех п >n0(e)

rU(u,Nn)< rU(u,N)+ e (2; 3,2)

Из (2; 3,1) и (2; 3,2) следует, что

(2;3,3)

Поскольку

то




(2;3,4)

Каждое множество Вn есть компакт, так как оно является замкнутым подмножеством компакта Nn. Поэтому в Вn найдется такой элемент уn , что

rU(yn ,u) = inf rU(y,u)

yÎBn

Последовательность {yn} имеет хотя бы одну пре­дельную точку, принадлежащую N, так как N — компакт. Пусть у0 — какая-нибудь предельная точка множества {yn} и {уnk} — подпоследовательность, сходящаяся к y0 , т. е.

Из (2; 3,3) и (2; 3,4) следует, что

Таким образом,

rU(u,y0)= rU(u,N).

Отсюда и из единственности квазирешения на множестве М следует, что

y0=Az1.

Так как у0 — произвольная предельная точка множества {yn}, то последовательность {уn} сходится к Аz1. Это и означает, что в качестве приближения к квазирешению мож­но брать любой элемент z1n из множества Тп, так как в силу леммы параграфа 2.1. z1nàz* при nà¥.

Если в качестве Мп брать конечномерные (n-мерные) множества, то задача нахождения приближенного квази­решения на компакте М сводится к минимизации функ­ционала rU(Az, u) на множестве Мп , т. е. к нахождению минимума функции п переменных.

2.4. Замена уравнения Аz=u близким ему

Уравнения вида (2; 0,1), в которых правая часть u не принадлежит множеству N=AM, изучались М. М. Лав­рентьевым . Ему принадлежит идея замены исходного уравнения (2; 0,1) близким ему, в некотором смысле, уравнением, для которого задача нахождения решения устойчива к малым изменениям правой части и разрешима для любой правой части u ÎU. В простей­шем случае это делается следующим образом.

Пусть F ºU ºН — гильбертовы пространства, А — линейный, ограниченный, положительный и самосопря­женный оператор, SR º {х, ||x||<=R, xÎF} есть шар радиуса R в пространстве F, В — вполне непрерывный оператор, определенный на SR при любом R > 0. В ка­честве класса корректности М берется множество DR=BSR — образ шара SR при отображении с помощью оператора В. Предполагается, что искомое точное решение zT уравнения (2; 0,1) с правой частью u=uT существует и принадлежит множеству DR. Уравнение (2; 0,1) заме­няется уравнением

 (A+aE)z º Az+az=u , (2:4,1)

где a>0 – числовой параметр. Решение уравнения

za=(A+aE)-1u , (2; 4,2)

при соответствующем выборе параметра a, принимается за приближенное решение уравнения (2; 0,1). Здесь Е — единичный оператор.

Замечание. Для оценки уклонения rF(zT,zd) приближенного решения от точного можно использовать мо­дуль непрерывности w обратного оператора на N.

Пусть u1, u2 Î N и rU(u1,u2)<=d. Тогда

w(d,N)= sup rF(A-1u1,A-1u2).

u1,u2 ÎN

Очевидно, что если rU(uT,ud)<= d и zd=A-1ud , то

rF(zT,zd)<=w(d,N).

Вернемся к уравнению (2; 4,1). Если || Az ||<=d и w(d,DR) = sup || z ||, то легко

DR

получить оценку уклонения za от zT. Очевидно, что

|| za- zT ||<=||za1 - zT|| + ||za- za1||, (2;4,3)

где

za1=(A + aE)-1uT.

Следовательно,

||za - zT||<=w(d,DR) + d/a. (2;4,4)

Если известен модуль непрерывности w(d,DR) или его мажоранта, то из (2; 4,4) можно найти значение пара­метра w как функцию d, при котором правая часть в не­равенстве (2; 4,4) будет минимальной.

2. 5. Метод квазиобращения

2.5.1. Известно, что задача Коши для уравнения тепло­проводности с обратным течением времени является не­устойчивой к малым изменениям начальных значений. Неустойчивость сохраняется и в случаях, когда решение подчиняется некоторым дополнительным граничным усло­виям. Для устойчивого решения таких задач разработан метод квазиобращения . Мы изложим существо его для простейшего уравнения теплопроводности, не вда­ваясь в вопросы обоснования. Подробное изложение в применении к более широкому классу задач содержится в .

2.5.2. Рассмотрим прямую задачу. Пусть D — конечная область n-мерного евклидова пространства Rn точек x = (x1, x2, ..., xn), ограниченная кусочно-гладкой по­верхностью S, a t — время. Пусть, далее, j(x) — заданная непрерывная в D функция. Прямая задача состоит в на­хождении решения u=u(x,t) уравнения

  (2;5,1)

в области G º {x Î D, t > 0}, удовлетворяющего гранич­ным условиям

u(х, t) =0 при xÎS (2; 5,2)

и начальным условиям

u(x, 0)= j(x). (2; 5,3)

 Здесь

Известно, что решение такой задачи существует. Каждой функции j(x)ÎC отвечает решение задачи (2; 5,1)— (2; 5,3). Будем обозначать его через u(х, t; j).

Обратная задача состоит в нахождении функции j(х) по известной функции u(х,t; j). В реальных задачах функция u(x,t;j) обычно получается в результате изме­рений и, следовательно, известна приближенно. Будем по­лагать, что uÎL2. Такая функция может и не соответст­вовать никакой «начальной» функции j(х). Таким обра­зом, может не существовать в классе функций С решения обратной задачи. Поэтому будем рассматривать задачу нахождения некоторого обобщенного решения обратной задачи.

Пусть заданы число T > 0 и функция y(x), опреде­ленная в области D, y(x) ÎL2. На функциях j(х) класса С определен функционал

Обобщенным решением обратной задачи будем называть функцию j(х)., на которой достигается

f0=inf f(j)

jÎC

Замечание. «Естественный» подход к решению этой задачи — выбрать функцию j(х).так, чтобы f(j)=0 .

Для этого достаточно найти решение прямой задачи

u(x, t) = 0 для х Î S, 0 < t < T;

u(x,T) = y(x)

и положить j (x) = u(x,0). Но такая задача при задан­ной функции y(x) из L2, вообще говоря, неразрешима и, кроме того, неустойчива к малым изменениям функ­ции y(x).

На некотором классе обобщенных функций j (x) f0=0 . Поэтому рассматривается задача на­хождения приближенного значения f0 с заданным уровнем погрешности.

Для заданного числа e > 0 найти функцию je(x), на которой f (je)<=e.

Эта задача и решается методом квазиобращения.

Идея метода квазиобращения состоит в том, что вмес­то оператора теплопроводности находится «близ­кий» ему оператор Вa, для которого задача с обращением отсчета времени

Baua = 0, x Î D, t < Т, a > 0;

ua(x,T)= y(x);

ua(x,t) = 0 для xÎ S, t< Т

устойчива. Решив эту задачу, полагают j (x)=ua(x,0). Обычно в качестве оператора Вa берут оператор  и решают прямую задачу

xÎ D, t<T, a>0;


ua(x,T)= y(x);

ua(x,t) = 0 для xÎ S, 0< t<= Т

 Dua=0 для xÎ S, 0< t<= Т.

Затем полагают

j (x)=ua(x,0).

Следует отметить, что uaне сходится в обычном смыс­ле при a à0.

3.МЕТОД РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ ОПЕРАТОРНЫХ УРАВНЕНИЙ

В главе предыдущем разделе рассмотрены случаи, когда класс возможных решений уравнения (2; 0,1) является компактом. Однако для ряда прикладных задач характерна ситуация, когда этот класс F не является компактом, и, кроме того, изме­нения правой части уравнения

Аz= u,  (3; 0,1)

связанные с ее приближенным характером, могут выво­дить за пределы множества AF — образа множества F при отображении его с помощью оператора А. Такие задачи называются существенно некорректными. Был разработан новый подход к решению некорректно поставленных задач, позволяющий строить приближенные решения уравнения (3; 0,1), устойчивые к малым изме­нениям исходных данных, для существенно некорректных задач. В основе этого подхода лежит фундаментальное понятие регуляризирующего оператора (P.O.) . Для упрощения изложения в настоящей главе мы будем полагать, что в уравнении (3; 0,1) приближенной может быть лишь пра­вая часть и, а оператор А известен точно.


Информация о работе «Методы решения некорректно поставленных задач»
Раздел: Математика
Количество знаков с пробелами: 57275
Количество таблиц: 7
Количество изображений: 0

Похожие работы

Скачать
39390
0
2

... , действующий из нормированного пространства Z в нормированное пространство U. В 1963 г. А.Н.Тихонов дал знаменитое определение регуляризирующего алгоритма (РА), которое лежит в основе современной теории некорректно поставленных задач. Определение. Регуляризирующим алгоритмом (регуляризирующим оператором)  называется оператор, обладающий двумя следующими свойствами: 1)  определен для любых δ ...

Скачать
139305
0
14

... при решении предусмотренных задач одна из эталонных схем (рабочая) копируется в рабочие файлы. Для моделирования, анализа и хранения режимов создана база режимов (до 12 режимов). Предусмотрена возможность записи произвольного режима, являющегося результатом решения одной из задач, в базу режимов. Все расчеты, включая и формирование отображаемых на дисплеях кадров, производятся на ЭВМ ИВП. В ИВП ...

Скачать
15935
0
12

... из-за дефектов производства, технологии изготовления, загрязнения поверхности, погрешности измерения и обработки экспериментальной информации. Влияние погрешностей исходной информации на решение обратной задачи теплопроводности оценивалось с помощью метода статистических испытаний Монте – Карло / 5-8 /. Анализ результата статистического моделирования решения обратной задачи позволяет установить ...

Скачать
26259
2
288

... и получим . ЧТД. Пример. Вычислим значение , где . Действие Содержимое НГ ВГ (1) x 2.57 2.58 (2) y 1.45 1.46 (3) z 8.33 8.34 (1)+(2) x+y 4.02 4.04 (1)-(2) x-y 1.11 1.13 9.24 9.43 2.28 2.35 §8. Математические модели и численные методы.Велика роль математики в решении задач реального мира. Физиков математика интересует не сама по ...

0 комментариев


Наверх