1. │х+у│ ≤ │х│+│у│, 2. │х-у│ ≥ │х│ - │у│,
3. │ху│ = │х│*│у│, 4. │х/у│ = │х│/│у│
Из определения абсолютной величины числа следует: -│х│≤ х ≤ │х│. Пусть │х│< ε, можно написать: -ε< -│х│≤ х ≤│х│<ε, или -ε<х<ε, т.е. значения х лежат на открытом интервале (-ε, ε).
Рассмотрим неравенства │х-а│<ε (где ε>0). Решениями этого неравенства будут точки открытого интервала (а – ε, а+ε), или а - ε<х<а+ε.
Всякий интервал, содержащий точку а называется окрестностью точки а.
Интервал (а – ε, а+ε), т.е. множество точек х таких, что │х-а│<ε (где ε>0), называется ε – окрестностью точки а. Рис.2 (ε – эсилон, буква греческого алфавита).
Рис.2
| ||||
а – ε а а+ε
Тема 9. Функция. Классификация функций.
Определение. Рассмотрим два множества Х и У, элементами которых могут быть любые объекты. Предложим, что каждому элементу х множества Х по некоторому закону или способу поставлен в соответствие определенный элемент у множества У, то говорят что на множестве Х задана функция у = ƒ(х), (или отображение множества Х во множество У).
Множество Х называется областью определения функции ƒ, а элементы у = ƒ(х) образуют множество значений функции – У.
х – независимая переменная (аргумент).
у – зависимая переменная,
ƒ – закон соответствия, знак функции.
Пусть Х и У множества вещественных чисел.
Пример. Найти область определения и область значений функции у = х2 + 1
Областью определения функции является множество Х = (-∞, ∞), область значений является множество У = [0, ∞).
Пример 2. Найти область определения функции у = 1/(х2 – 5х + 6).
Решение: Найдем значения х, в которых знаменатель обращается в нуль.
х2 – 5х + 6=0. х1 = 2, х2=3. Функция не существует в этих точках. Областью определения является объединение таких множеств: (-∞, 2) U (2, 3) U (3, ∞).
Пример 3. Найти область определения функции у= log3(х – 1).
Решение: х – 1 >0, х>1. Запишем решение в виде интервала: (1, ∞) – область определения функции.
Пример 4. Дана функция f (х) = |х + 2|/х – 1. Найти значения функции в точках
х = -2, х = -3, х = 1, х = 0.
Решение: f(-2) = |-2+2| / (2-1) = 0/1 = 0; f (-3) = |-3+2| / (3 – 2) = | - 1| / 1= 1;
f(1) = |1+2| / (1 – 1) = 3/0, точка х = 1 в область определения функции не входит, так как знаменатель в этой точке обращается в 0.
f (0) = |0 + 2| / (0-1) = 2/ -1 = -2.
Пример 5. Дана функция f(х) = 3х2 + х – 1.
Найти значение этой функции при 1) х=а2 – 1, 2) х = 1/t.
Решение: 1)f(а2 – 1) = 3(а2 – 1)2 + а2 – 1 – 1=3а4 – 6а2 + 3 + а2 - 2 = 3а4 – 5а2 + 1.
2) f (1/t) = 3(1/t2) + 1/t – 1 = (3 + t – t2)/t2.
Способы задания функции. Существует несколько способов задания функции.
а) аналитический способ, если функция задана формулой вида у = f (х). Все функции, рассмотренные в примерах 1-5 заданы аналитически.
б) табличный способ состоит в том, что функция задается таблицей, содержащей значения х и соответствующие значения f (х), например, таблица логарифмов.
в) графический способ, состоит в изображении графика функции – множество точек (х, у) плоскости, абсциссы которых есть значения аргумента х, а ординаты – соответствующие им значения функции у = f (х).
Например, у = х2 (Рис.1); у = (Рис.2)
у
у
0 х 0 х
Рис. 1. Рис. 2.
Г) Описательный способ, если функция записывается правилом ее составления, например, функция Дирихле:
1, если х – рациональное число.
f(х) =
0, если х – иррациональное число.
Основные элементарные функции.
Все функции, с которыми встречаемся в школьном курсе, элементарные. Перечислим их:
1. у = хп, у = х –п, у = хм/п, где п, Є N, м Є Z. Эти функции называются степенными.
2. Показательная функция у = ах, а > 0, а ≠ 1.
3. Логарифмическая функция у = logах, а>0, а ≠ 1
... ” дремавшие под их покровами нации: уже абсолютистские государства де-факто были национальными, хотя политическая система покоилась на феодальных династических основаниях, затемнявших новый факт европейской истории; близкородственные этнические группы совместной социально-экономической и политической, государственной жизнью сплачивались в политические нации. Революция сметя династии и систему ...
... П.Сорокин относит следующие социальные институты: армия, церковь, образовательные институты, семья, политические и профессиональные организации, средства массовой информации и т.д.Литература Беляев В.А., Филатов А.Н. Социология: Учебн. курс для вузов. Ч. 1. – Казань, 1997. –Гл. 9. Радуев В.В., Шкаратан О.И. Социальная стратификация: учебн. пособие. М., 1996. Радугин А. А., Радугин К. А. ...
... университет П. Е. Матвеев ЭТИКА. Основы хозяйственной этики Владимир 2003 Министерство образования Российской Федерации Владимирский государственный университет П.Е. Матвеев ЭТИКА. Основы хозяйственной этики Курс лекций Ч а с т ь в т о р а я Владимир 2003 ББК 87.715.4 М 33 Рецензенты:Доктор философских наук, доктор юридических наук, профессор Владимирского юридического института ...
... », «запрещено», «безразлично» и т. п. 1 Особенности других видов норм, в том числе и их структуры, рассматриваются в пар. 4 наст. главы. 1Черданцев Л.Ф. Теория государства и права. Курс лекций. Екатеринбург, 1996. С. 83-84; Общая теория права / Под ред. А.С. Пиголкина. М., 1995. С. 157-158.1Название «диспозиция» как специальное для «карательных» норм уголовного и административного права вполне ...
0 комментариев