1. │х+у│ ≤ │х│+│у│, 2. │х-у│ ≥ │х│ - │у│,

3. │ху│ = │х│*│у│, 4. │х/у│ = │х│/│у│

Из определения абсолютной величины числа следует: -│х│≤ х ≤ │х│. Пусть │х│< ε, можно написать: -ε< -│х│≤ х ≤│х│<ε, или -ε<х<ε, т.е. значения х лежат на открытом интервале (-ε, ε).

Рассмотрим неравенства │х-а│<ε (где ε>0). Решениями этого неравенства будут точки открытого интервала (а – ε, а+ε), или а - ε<х<а+ε.

Всякий интервал, содержащий точку а называется окрестностью точки а.

Интервал (а – ε, а+ε), т.е. множество точек х таких, что │х-а│<ε (где ε>0), называется ε – окрестностью точки а. Рис.2 (ε – эсилон, буква греческого алфавита).

Рис.2

х

 

а – ε а а+ε


Тема 9. Функция. Классификация функций.

Определение. Рассмотрим два множества Х и У, элементами которых могут быть любые объекты. Предложим, что каждому элементу х множества Х по некоторому закону или способу поставлен в соответствие определенный элемент у множества У, то говорят что на множестве Х задана функция у = ƒ(х), (или отображение множества Х во множество У).

Множество Х называется областью определения функции ƒ, а элементы у = ƒ(х) образуют множество значений функции – У.

х – независимая переменная (аргумент).

у – зависимая переменная,

ƒ – закон соответствия, знак функции.

Пусть Х и У множества вещественных чисел.

Пример. Найти область определения и область значений функции у = х2 + 1

Областью определения функции является множество Х = (-∞, ∞), область значений является множество У = [0, ∞).

Пример 2. Найти область определения функции у = 1/(х2 – 5х + 6).

Решение: Найдем значения х, в которых знаменатель обращается в нуль.

 х2 – 5х + 6=0. х1 = 2, х2=3. Функция не существует в этих точках. Областью определения является объединение таких множеств: (-∞, 2) U (2, 3) U (3, ∞).

Пример 3. Найти область определения функции у= log3(х – 1).

Решение: х – 1 >0, х>1. Запишем решение в виде интервала: (1, ∞) – область определения функции.


Пример 4. Дана функция f (х) = |х + 2|/х – 1. Найти значения функции в точках

х = -2, х = -3, х = 1, х = 0.

Решение: f(-2) = |-2+2| / (2-1) = 0/1 = 0; f (-3) = |-3+2| / (3 – 2) = | - 1| / 1= 1;

f(1) = |1+2| / (1 – 1) = 3/0, точка х = 1 в область определения функции не входит, так как знаменатель в этой точке обращается в 0.

f (0) = |0 + 2| / (0-1) = 2/ -1 = -2.

 

Пример 5. Дана функция f(х) = 3х2 + х – 1.

Найти значение этой функции при 1) х=а2 – 1, 2) х = 1/t.

Решение: 1)f(а2 – 1) = 3(а2 – 1)2 + а2 – 1 – 1=3а4 – 6а2 + 3 + а2  - 2 = 3а4 – 5а2 + 1.

2) f (1/t) = 3(1/t2) + 1/t – 1 = (3 + t – t2)/t2.

Способы задания функции. Существует несколько способов задания функции.

а) аналитический способ, если функция задана формулой вида у = f (х). Все функции, рассмотренные в примерах 1-5 заданы аналитически.

б) табличный способ состоит в том, что функция задается таблицей, содержащей значения х и соответствующие значения f (х), например, таблица логарифмов.

в) графический способ, состоит в изображении графика функции – множество точек (х, у) плоскости, абсциссы которых есть значения аргумента х, а ординаты – соответствующие им значения функции у = f (х).

Например, у = х2 (Рис.1); у =  (Рис.2)

 у

у


0  х 0 х

Рис. 1. Рис. 2.

Г) Описательный способ, если функция записывается правилом ее составления, например, функция Дирихле:

1, если х – рациональное число.

f(х) =

0, если х – иррациональное число.

Основные элементарные функции.

Все функции, с которыми встречаемся в школьном курсе, элементарные. Перечислим их:

1.   у = хп, у = х –п, у = хм/п, где п, Є N, м Є Z. Эти функции называются степенными.

2.   Показательная функция у = ах, а > 0, а ≠ 1.

3.   Логарифмическая функция у = logах, а>0, а ≠ 1


Информация о работе «Полный курс лекций по математике»
Раздел: Математика
Количество знаков с пробелами: 81436
Количество таблиц: 23
Количество изображений: 17

Похожие работы

Скачать
349421
0
1

... ” дремавшие под их покровами нации: уже абсолютистские государства де-факто были национальными, хотя политическая система покоилась на феодальных династических основаниях, затемнявших новый факт европейской истории; близкородственные этнические группы совместной социально-экономической и политической, государственной жизнью сплачивались в политические нации. Революция сметя династии и систему ...

Скачать
98707
1
0

... П.Сорокин относит следующие социальные институты: армия, церковь, образовательные институты, семья, политические и профессиональные организации, средства массовой информации и т.д.Литература Беляев В.А., Филатов А.Н. Социология: Учебн. курс для вузов. Ч. 1. – Казань, 1997. –Гл. 9. Радуев В.В., Шкаратан О.И. Социальная стратификация: учебн. пособие. М., 1996. Радугин А. А., Радугин К. А. ...

Скачать
245763
0
5

... университет П. Е. Матвеев ЭТИКА. Основы хозяйственной этики Владимир 2003 Министерство образования Российской Федерации Владимирский государственный университет П.Е. Матвеев ЭТИКА. Основы хозяйственной этики Курс лекций Ч а с т ь в т о р а я Владимир 2003 ББК 87.715.4 М 33 Рецензенты:Доктор философских наук, доктор юридических наук, профессор Владимирского юридического института ...

Скачать
645424
1
0

... », «запрещено», «безразлично» и т. п. 1 Особенности других видов норм, в том числе и их структуры, рассматриваются в пар. 4 наст. главы. 1Черданцев Л.Ф. Теория государства и права. Курс лекций. Екатеринбург, 1996. С. 83-84; Общая теория права / Под ред. А.С. Пиголкина. М., 1995. С. 157-158.1Название «диспозиция» как специальное для «карательных» норм уголовного и административного права вполне ...

0 комментариев


Наверх