3. Арифметические функции: t(n), s(n), j(n).

 

10. Полная мультипликативность.

Определение. Числовой (арифметической) функцией называется функция, определенная на множестве Z+ целых положительных чисел и принимающая комплексные значения.

Числовая функция q называется вполне мультипликативной, если выполнены условия:

(1) ($x) q(x)¹0,

(2) для любых взаимно простых чисел x и y

q(xy)= q(x) q(y).

Заметим, что непосредственно из определения вытекает равенство

q(1)=1.

В самом деле, q(1)¹0, так как иначе данная функция q была бы нулевой; q(1)= q(1×1)= q(1) q(1), следовательно, q(1)=1.

Легко проверить, что каждая из следующих функций

q(x)=1, q(x)= x, q(x)= x-1,

вполне мультипликативна.

Следующая теорема позволяет существенно расширить запас вполне мультипликативных функций.

Теорема. Произведение вполне мультипликативных функций является вполне мультипликативной функцией.

Доказательство. Пусть числа x и y взаимно просты, а функции f и g вполне мультипликативны. Тогда, обозначив через h произведение функций f и g, имеем:

h(xy)=f(xy)g(xy)=f(x)f(y)g(x)g(y)=[f(x)g(x)][f(y)g(y)]=

=h(x)h(y).

Следствие. Для любого целого k функция q(x)= xk вполне мультипликативна.

20. Сумма значений функции по всем делителям аргумента.

Введем в рассмотрение, наряду с функцией q(x), функцию

,

равную сумме всех значений функции q(d) при условии, что переменная d пробегает все делители числа x.

Теорема (основное тождество). Если x=, то

×.

В частности, если функция q вполне мультипликативна, то и функция  также вполне мультипликативна.

Доказательство. Рассмотрим произведение сумм, находящееся в правой части требуемого равенства:

=

==.

Осталось заметить, что для каждого набора (g1, g2,..., gk) целых неотрицательных чисел gi, не превосходящих ai, в сумме

каждое слагаемое встречается ровно один раз. Учитывая теперь, что каждый делитель числа имеет вид , получаем

=.

Свойство полной мультипликативности рассматриваемой функции немедленно вытекает из того, что взаимно простые числа содержат различные простые сомножители. ÿ

30. Число делителей t(x) и сумма делителей s(x).

Рассмотрим следующие вполне мультипликативные функции:

t(x)= , где q(x)=1, - число делителей числа x,

s(x)= , где q(x) = x, - сумма делителей числа x.

Теорема. Справедливы тождества:

t()=(a1 + 1)( a2 + 1)...( ak + 1),

s()=.

Доказательство. а) Из определения функции t(x) немедленно следует указанное тождество, поскольку в силу основного тождества легко подсчитать число слагаемых, каждое из которых равно 1, в каждой из скобок соответствующего произведения.

б) Это тождество получается из основного тождества и формулы суммы членов геометрической прогрессии:

.ÿ

40. Функция Эйлера. Одной из важнейших числовых функций является следующая функция, впервые введенная в рассмотрение Эйлером.

Определение. Через j(x) обозначается количество чисел ряда

1, 2, ..., x, (*)

взаимно простых с числом x.

Справедлива следующая теорема, которую приведем без доказательства.

Теорема. Если x=, то

j(x)= x× .

Следствие. Функция Эйлера вполне мультипликативна и

.

Теорема (тождество Гаусса). .

Доказательство. Применяя основное тождество и последнее следствие, получаем, считая ,

 

. ÿ



Информация о работе «Программа государственного экзамена по математике для студентов математического факультета Московского городского педагогического университета»
Раздел: Математика
Количество знаков с пробелами: 38950
Количество таблиц: 13
Количество изображений: 4

Похожие работы

Скачать
106762
1
2

... учебного процесса методической подготовки будущего учителя. Основное содержание исследования отражено в следующих публикациях автора:   I. Монографии: 1. Абдуразаков М.М. Совершенствования содержания подготовки будущего учителя информатики в условиях информатизации образования. –Махачкала: ДГПУ, 2006. –190 с. 12 п.л. 2. Гаджиев Г.М., Абдуразаков М.М. Технология преподавания информатики. – ...

Скачать
47400
0
0

... профиля и специализации. На факультетах общественных наук предметы, входившие в минимум, изучались в расширенном объеме[4]. 2. Положение русского студенчества в конце XIX начале XX века 2.1 Образ русского студента в конце XIX начале XX века В отличие от закрытых учебных заведений, в которых учились в основном дворяне, значительное число учащихся в университетах были людьми незнатными ...

Скачать
899509
4
0

... и устойчивых требований, которые определяют характер и особенности организации коррекционно-образовательного процесса и управления познавательной деятельностью лиц с особыми образовательными потребностями. Специальная педагогика опирается на соответствующие обще- педагогические принципы организации образования и управления познавательной деятельностью, однако их реализация в системе специального ...

Скачать
52769
0
0

... покровителей, сделавших особый вклад в развитие культуры, в Европе называют медичи. Конец девятнадцатого века в России был ознаменован необычайным подъёмом культуры. В связи с этим появились в стране и те, кто этот подъём всячески поддерживал, в том числе и материально. Эти люди были в основном богатыми купцами и промышленниками, которые чувствовали необычайный прогресс в развитии культуры ...

0 комментариев


Наверх