4. По графику определяем, при каких значениях а уравнение (5) имеет решение и при каких – не имеет решения.
Ответ:
если , то
если , то ;
если , то решений нет;
если , то , .
VI. Каким условиям должны удовлетворять те значения параметров и , при которых системы
(1)
и
(2)
имеют одинаковое число решений ?
Решение.
С учетом того, что имеет смысл только при , получаем после преобразований систему
(3)
равносильную системе (1).
Система (2) равносильна системе
(4)
Первое уравнение системы (4) задает в плоскости хОу семейство прямых, второе уравнение задает семейство концентрических окружностей с центром в точке А(1;1) и радиусом
Поскольку , а , то , и, следовательно, система (4) имеет не менее четырех решений. При окружность касается прямой и система (4) имеет пять решений.
Таким образом, если , то система (4) имеет четыре решения, если , то таких решений будет больше, чем четыре.
Если же иметь в виду не радиусы окружностей, а сам параметр а, то система (4) имеет четыре решения в случае, когда , и больше четырех решений, если .
Обратимся теперь к рассмотрению системы (3). Первое уравнение этой системы задаёт в плоскости хОу семейство гипербол, расположенных в первом и втором квадрантах. Второе уравнение системы (3) задает в плоскости хОу семейство прямых.
При фиксированных положительных а и b система (3) может иметь два, три, или четыре решения. Число же решений зависит от того, будет ли прямая, заданная уравнением , иметь общие точки с гиперболой при (прямая всегда имеет одну точку пересечения с графиком функции ).
Для решения этого рассмотрим уравнение
,
которое удобнее переписать в виде
Теперь решение задачи сводится к рассмотрению дискриминанта D последнего уравнения:
* если , т.е. если , то система (3) имеет два решения;
* если , то система (3) имеет три решения;
* если , то система (3) имеет четыре решения.
Таким образом, одинаковое число решений у систем (1) и (2) – это четыре. И это имеет место, когда .
Ответ:
II. Неравенства с параметрами.
§1. Основные определения
Неравенство
¦(a, b, c, …, k, x)>j(a, b, c, …, k, x), (1)
где a, b, c, …, k – параметры, а x – действительная переменная величина, называется неравенством с одним неизвестным, содержащим параметры.
Любая система значений параметров а = а0, b = b0, c = c0, …, k = k0, при некоторой функции
¦(a, b, c, …, k, x) и
j(a, b, c, …, k, x
имеют смысл в области действительных чисел, называется системой допустимых значений параметров.
называется допустимым значением х, если
¦(a, b, c, …, k, x) и
j(a, b, c, …, k, x
принимают действительные значения при любой допустимой системе значений параметров.
Множество всех допустимых значений х называется областью определения неравенства (1).
Действительное число х0 называется частным решением неравенства (1), если неравенство
¦(a, b, c, …, k, x0)>j(a, b, c, …, k, x0)
верно при любой системе допустимых значений параметров.
Совокупность всех частных решений неравенства (1) называется общим решением этого неравенства.
Решить неравенство (1) – значит указать, при каких значениях параметров существует общее решение и каково оно.
Два неравенства
¦(a, b, c, …, k, x)>j(a, b, c, …, k, x) и (1)
z(a, b, c, …, k, x)>y(a, b, c, …, k, x) (2)
называются равносильными, если они имеют одинаковые общие решения при одном и том же множестве систем допустимых значений параметров.
§2. Алгоритм решения.
1. Находим область определения данного неравенства.
2. Сводим неравенство к уравнению.
3. Выражаем а как функцию от х.
4. В системе координат хОа строим графики функций а =¦ (х) для тех значений х, которые входят в область определения данного неравенства.
5. Находим множества точек, удовлетворяющих данному неравенству.
6. Исследуем влияние параметра на результат.
· найдём абсциссы точек пересечения графиков.
· зададим прямую а=соnst и будем сдвигать её от -¥ до+¥
7. Записываем ответ.
Это всего лишь один из алгоритмов решения неравенств с параметрами, с использованием системы координат хОа. Возможны и другие методы решения, с использованием стандартной системы координат хОy.
§3. Примеры
I. Для всех допустимых значений параметра а решить неравенство
Решение.
В области определения параметра а, определённого системой неравенств
данное неравенство равносильно системе неравенств
Если , то решения исходного неравенства заполняют отрезок .
Ответ: , .
II. При каких значениях параметра а имеет решение система
Решение.
Найдем корни трехчлена левой части неравенства –
(*)
Прямые, заданные равенствами (*), разбивают координатную плоскость аОх на четыре области, в каждой из которых квадратный трехчлен
сохраняет постоянный знак. Уравнение (2) задает окружность радиуса 2 с центром в начале координат. Тогда решением исходной системы будет пересечение заштрихован
ной области с окружностью, где , а значения и находятся из системы
а значения и находятся из системы
Решая эти системы, получаем, что
Ответ:
III. Решить неравенство на в зависимости от значений параметра а.
Решение.
Находим область допустимых значений –
Построим график функции в системе координат хОу.
· при неравенство решений не имеет.
· при для решение х удовлетворяет соотношению , где
Ответ: Решения неравенства существуют при
, где , причем при решения ; при решения .
IV. Решить неравенство
Решение.
Находим ОДЗ или линии разрыва (асимптоты)
Найдем уравнения функций, графики которых нужно построить в ПСК; для чего перейдем к равенству :
Разложим числитель на множители.
т. к. то
Разделим обе части равенства на при . Но является решением : левая часть уравнения равна правой части и равна нулю при .
... список или выбрать из 2-3 текстов наиболее интересные места. Таким образом, мы рассмотрели общие положения по созданию и проведению элективных курсов, которые будут учтены при разработке элективного курса по алгебре для 9 класса «Квадратные уравнения и неравенства с параметром». Глава II. Методика проведения элективного курса «Квадратные уравнения и неравенства с параметром» 1.1. Общие ...
... проведении исследования были решены следующие задачи: 1) Проанализированы действующие учебники алгебры и начала математического анализа для выявления представленной в них методики решения иррациональных уравнений и неравенств. Проведенный анализ позволяет сделать следующие выводы: ·в средней школе недостаточное внимание уделяется методам решения различных иррациональных уравнений, в основном ...
... ;[0; 1), тогда x – x +1 = 1; 1 = 1 Þ x — любое число из [0; 1). В) x Î[1; ¥), тогда x + x – 1 = 1; 2x = 2; x = 1 Î[1; ¥). Ответ: x Î[0; 1]. Основные методы решения рациональных уравнений. 1) Простейшие: решаются путём обычных упрощений — приведение к общему знаменателю, приведение подобных членов и так далее. Квадратные уравнения ax2 + bx + c = 0 решаются по ...
... функция является знакопостоянной. Вычисляя, например, , получаем, что функция принимает только положительные значения. Ответ. . Метод интервалов позволяет решать более сложные уравнения и неравенства с модулями, но в этом случае он имеет несколько иное назначение. Суть состоит в слудующем. Находим корни всех подмодульных выражений и разбиваем числовую ось на промежутки знакопостоянства этих ...
0 комментариев