4.   По графику определяем, при каких значениях а уравнение (5) имеет решение и при каких – не имеет решения.

Ответ:

если , то

если , то ;

если , то решений нет;

если , то , .

VI. Каким условиям должны удовлетворять те значения параметров и , при которых системы

(1)

и

(2)

имеют одинаковое число решений ?

Решение.

С учетом того, что  имеет смысл только при , получаем после преобразований систему

(3)

равносильную системе (1).

Система (2) равносильна системе

(4)

Первое уравнение системы (4) задает в плоскости хОу семейство прямых, второе уравнение задает семейство концентрических окружностей с центром в точке А(1;1) и радиусом  

Поскольку , а , то , и, следовательно, система (4) имеет не менее четырех решений. При  окружность касается прямой  и система (4) имеет пять решений.

Таким образом, если , то система (4) имеет четыре решения, если , то таких решений будет больше, чем четыре.

Если же иметь в виду не радиусы окружностей, а сам параметр а, то система (4) имеет четыре решения в случае, когда , и больше четырех решений, если .

Обратимся теперь к рассмотрению системы (3). Первое уравнение этой системы задаёт в плоскости хОу семейство гипербол, расположенных в первом и втором квадрантах. Второе уравнение системы (3) задает в плоскости хОу семейство прямых.

При фиксированных положительных а и b система (3) может иметь два, три, или четыре решения. Число же решений зависит от того, будет ли прямая, заданная уравнением  , иметь общие точки с гиперболой  при  (прямая  всегда имеет одну точку пересечения с графиком функции ).

Для решения этого рассмотрим уравнение

,

которое удобнее переписать в виде

Теперь решение задачи сводится к рассмотрению дискриминанта D последнего уравнения:

*          если , т.е. если , то система (3) имеет два решения;

*          если , то система (3) имеет три решения;

*          если , то система (3) имеет четыре решения.

Таким образом, одинаковое число решений у систем (1) и (2) – это четыре. И это имеет место, когда .

Ответ:

II. Неравенства с параметрами.

§1. Основные определения

Неравенство

¦(a, b, c, …, k, x)>j(a, b, c, …, k, x), (1)

где a, b, c, …, k – параметры, а x – действительная переменная величина, называется неравенством с одним неизвестным, содержащим параметры.

Любая система значений параметров а = а0, b = b0, c = c0, …, k = k0, при некоторой функции

¦(a, b, c, …, k, x) и

j(a, b, c, …, k, x

имеют смысл в области действительных чисел, называется системой допустимых значений параметров.

называется допустимым значением х, если

¦(a, b, c, …, k, x) и

j(a, b, c, …, k, x

принимают действительные значения при любой допустимой системе значений параметров.

Множество всех допустимых значений х называется областью определения неравенства (1).

Действительное число х0 называется частным решением неравенства (1), если неравенство

¦(a, b, c, …, k, x0)>j(a, b, c, …, k, x0)

верно при любой системе допустимых значений параметров.

Совокупность всех частных решений неравенства (1) называется общим решением этого неравенства.

Решить неравенство (1) – значит указать, при каких значениях параметров существует общее решение и каково оно.

Два неравенства

¦(a, b, c, …, k, x)>j(a, b, c, …, k, x) и (1)

z(a, b, c, …, k, x)>y(a, b, c, …, k, x) (2)

называются равносильными, если они имеют одинаковые общие решения при одном и том же множестве систем допустимых значений параметров.

 

§2. Алгоритм решения.

1.   Находим область определения данного неравенства.

2.   Сводим неравенство к уравнению.

3.   Выражаем а как функцию от х.

4.   В системе координат хОа строим графики функций а =¦ (х) для тех значений х, которые входят в область определения данного неравенства.

5.   Находим множества точек, удовлетворяющих данному неравенству.

6.   Исследуем влияние параметра на результат.

·   найдём абсциссы точек пересечения графиков.

·   зададим прямую а=соnst и будем сдвигать её от -¥ до+¥

7.   Записываем ответ.

Это всего лишь один из алгоритмов решения неравенств с параметрами, с использованием системы координат хОа. Возможны и другие методы решения, с использованием стандартной системы координат хОy.

 

§3. Примеры

I. Для всех допустимых значений параметра а решить неравенство

Решение.

В области определения параметра а, определённого системой неравенств

данное неравенство равносильно системе неравенств

Если , то решения исходного неравенства заполняют отрезок .

Ответ: , .

II. При каких значениях параметра а имеет решение система

Решение.

Найдем корни трехчлена левой части неравенства –

(*)

Прямые, заданные равенствами (*), разбивают координатную плоскость аОх на четыре области, в каждой из которых квадратный трехчлен

сохраняет постоянный знак. Уравнение (2) задает окружность радиуса 2 с центром в начале координат. Тогда решением исходной системы будет пересечение заштрихован

ной области с окружностью, где , а значения  и  находятся из системы

а значения  и  находятся из системы

Решая эти системы, получаем, что

Ответ:

III. Решить неравенство  на  в зависимости от значений параметра а.

Решение.

   Находим область допустимых значений –

   Построим график функции в системе координат хОу.

·   при  неравенство решений не имеет.

·   при  для  решение х удовлетворяет соотношению , где

Ответ: Решения неравенства существуют при

, где  , причем при  решения ; при  решения  .

IV. Решить неравенство

Решение.

   Находим ОДЗ или линии разрыва (асимптоты)

   Найдем уравнения функций, графики которых нужно построить в ПСК; для чего перейдем к равенству :

 

Разложим числитель на множители.

т. к. то

Разделим обе части равенства на  при . Но  является решением : левая часть уравнения равна правой части и равна нулю при .


Информация о работе «Решение некоторых уравнений и неравенств с параметром»
Раздел: Математика
Количество знаков с пробелами: 14470
Количество таблиц: 1
Количество изображений: 3

Похожие работы

Скачать
87023
7
1

... список или выбрать из 2-3 текстов наиболее интересные места. Таким образом, мы рассмотрели общие положения по созданию и проведению элективных курсов, которые будут учтены при разработке элективного курса по алгебре для 9 класса «Квадратные уравнения и неравенства с параметром». Глава II. Методика проведения элективного курса «Квадратные уравнения и неравенства с параметром»   1.1. Общие ...

Скачать
98604
5
19

... проведении исследования были решены следующие задачи: 1)  Проанализированы действующие учебники алгебры и начала математического анализа для выявления представленной в них методики решения иррациональных уравнений и неравенств. Проведенный анализ позволяет сделать следующие выводы: ·в средней школе недостаточное внимание уделяется методам решения различных иррациональных уравнений, в основном ...

Скачать
92269
3
13

... ;[0; 1), тогда x – x +1 = 1; 1 = 1 Þ x — любое число из [0; 1). В) x Î[1; ¥), тогда x + x – 1 = 1; 2x = 2; x = 1 Î[1; ¥). Ответ: x Î[0; 1]. Основные методы решения рациональных уравнений. 1) Простейшие: решаются путём обычных упрощений — приведение к общему знаменателю, приведение подобных членов и так далее. Квадратные уравнения ax2 + bx + c = 0 решаются по ...

Скачать
54343
1
32

... функция является знакопостоянной. Вычисляя, например, , получаем, что функция принимает только положительные значения. Ответ. . Метод интервалов позволяет решать более сложные уравнения и неравенства с модулями, но в этом случае он имеет несколько иное назначение. Суть состоит в слудующем. Находим корни всех подмодульных выражений и разбиваем числовую ось на промежутки знакопостоянства этих ...

0 комментариев


Наверх