2. Определение коэффициентов ряда по формулам Фурье.

Пусть периодическая функция ƒ(х) с периодом 2π такая, что она представляется тригонометрическим рядом, сходящимся к данной функции в интервале (-π, π), т. е. является суммой этого ряда:

ƒ(x)=. (2)

Предположим, что интеграл от функции, стоящей в левой части этого равенства, равняется сумме интегралов от членов этого ряда. Это будет выполняться, если предположить, что числовой ряд, составленный из коэффициентов данного тригонометрического ряда, абсолютно сходится, т. е.. сходится положительный числовой ряд

(3)

Ряд (1) мажорируем и его можно почленно интегрировать в промежутке (-π, π). Проинтегрируем обе части равенства (2):

.

Вычислим отдельно каждый интеграл, встречающийся в правой части:

,

,

.

Таким образом, , откуда

. (4)

Оценка коэффициентов Фурье. (Бугров)

Теорема 1. Пусть функция ƒ(x) периода 2π имеет непрерывную производную ƒ(s)(x) порядка s, удовлетворяющей на всей действительной оси неравенству:

│ ƒ(s)(x)│≤ Ms; (5)

тогда коэффициенты Фурье функции ƒ удовлетворяют неравенству

(6)

Доказательство. Интегрируя по частям и учитывая, что

ƒ(-π) = ƒ(π), имеем

Поэтому

Интегрируя правую часть (7) последовательно, учитывая, что производные ƒ΄, …, ƒ(s-1) непрерывны и принимают одинаковые значения в точках t = -π и t = π, а также оценку (5), получим первую оценку (6).

Вторая оценка (6) получается подобным образом.

Теорема 2. Для коэффициентов Фурье ƒ(x) имеет место неравенство

(8)

Доказательство. Имеем

(9)

Вводя в данном случае замену переменной  и учитывая, что ƒ(x) – периодическая функция, получим

Складывая (9) и (10), получаем

Отсюда

Аналогичным образом проводим доказательство для bk.

Следствие. Если функция ƒ(x) непрерывна, то её коэффициенты Фурье стремятся к нулю: ak → 0, bk → 0, k → ∞.

 

Пространство функций со скалярным произведением.

Функция ƒ(x) называется кусочно-непрерывной на отрезке [a, b], если она непрерывна на этом отрезке, за исключением, может быть, конечного числа точек, где она имеет разрывы первого рода. Такие точки можно складывать и умножать на действительные числа и получать как результат снова кусочно-непрерывные на отрезке [a, b] функции.

Скалярным произведением двух кусочно-непрерывных на [a, b] (a < b) функций ƒ и φ будем называть интеграл

(11)

Очевидно для любых кусочно-непрерывных на [a, b] функций ƒ , φ , ψ выполняются свойства:

1)                                  (ƒ , φ ) =( φ, ƒ );

2)                                  (ƒ , ƒ ) и из равенства (ƒ , ƒ ) = 0 следует, что ƒ(x) =0 на [a, b], исключая, быть может, конечное число точек x;

3)                                  (α ƒ + β φ , ψ) = α (ƒ , ψ) + β ( φ , ψ),

где α, β – произвольные действительные числа.

Множество всех кусочно-непрерывных функций, определенных на отрезке [a, b], для которых введено скалярное произведение по формуле (11), мы будем обозначать,  и называть пространством

Замечание 1.

В математике называют пространством = (a, b) совокупность функций ƒ(x), интегрируемых в лебеговом смысле на [a, b] вместе со своими квадратами, для которых введено скалярное произведение по формуле (11). Рассматриваемое пространство  есть часть . Пространство  обладает многими свойствами пространства , но не всеми.

Из свойств 1), 2), 3) следует важное неравенство Буняковского | (ƒ , φ ) | ≤ (ƒ , ƒ )½ (φ , φ ) ½, которое на языке интегралов выглядит так:

Величина

называется нормой функции f.

Норма обладает следующими свойствами:

1)                 || f || ≥ 0, при этом равенство может быть только для нулевой функции f = 0, т. е. функции, равной нулю, за исключением, быть может, конечного числа точек;

2)                 || ƒ + φ || ≤ || ƒ(x) || || φ ||;

3)                 || α ƒ || = | α | · || ƒ ||,

где α – действительное число.

Второе свойство на языке интегралов выглядит так:

и называется неравенством Минковского.

Говорят, что последовательность функций { fn }, принадлежит к ,сходится к функции принадлежит  в смысле среднего квадратического на [a, b] (или ещё по норме ), если

Отметим, что если последовательность функций ƒn (x) сходится равномерно к функции ƒ(x) на отрезке [a, b], то для достаточно больших n разность ƒ(x) - ƒn (x) по абсолютной величине должна быть мала для всех х из отрезка [a, b].

В случае же, если ƒn (x) стремится к ƒ(x)в смысле среднего квадратического на отрезке [a, b], то указанная разность может и не быть малой для больших n всюду на [a, b]. В отдельных местах отрезка [a, b] эта разность может быть и велика, но важно только, чтобы интеграл от её квадрата по отрезку [a, b] был мал для больших n.

Пример. Пусть на [0, l ] заданна изображенная на рисунке непрерывная кусочно-линейная функция ƒn (x) (n = 1, 2,…), причем

 



(Бугров, стр. 281, рис. 120)

При любом натуральном n

и, следовательно, эта последовательность функций, хотя и сходится к нулю при n → ∞, но неравномерно. Между тем

т. е. последовательность функций {fn (х)} стремится к нулю в смысле среднего квадратического на [0, 1].

Из элементов некоторой последовательности функций ƒ1, ƒ2, ƒ3,… (принадлежащих ) построим ряд

ƒ1 + ƒ2 + ƒ3 +… (12)

Сумма первых его n членов

σ n = ƒ1 + ƒ2 + … + ƒn

есть функция, принадлежащая к . Если случится, что в  существует функция ƒ такая, что

|| ƒ- σn || → 0 (n → ∞),

то говорят, что ряд (12) сходится к функции ƒ в смысле среднего квадратического и пишут

ƒ = ƒ1 + ƒ2 + ƒ3 +…

Замечание 2.

Можно рассматривать пространство  = (a, b) комплекснозначных функций ƒ(x) = ƒ1(x) + iƒ2(x), где ƒ1(x) и ƒ2(x) – действительные кусочно – непрерывные на [a, b] функции. В этом пространстве функции умножаются на комплексные числа и скалярное произведение функций ƒ(x) = ƒ1(x) + iƒ2(x) и φ(х) = φ1(х) +i φ2(х) определяется следующим образом:

а норма ƒ определяется как величина

 


Информация о работе «Ряды Фурье и их приложения»
Раздел: Математика
Количество знаков с пробелами: 44324
Количество таблиц: 0
Количество изображений: 22

Похожие работы

Скачать
22876
13
6

... затрачивается большой объем памяти для хранения промежуточных данных (u,v,p,…). Метод Рунге скорее удобен для вычисления вручную, но менее актуален в программировании. Если говорить о нахождении более оптимального метода расчета коэффициентов Фурье на ЭВМ, то таким является вышеописанное быстрое преобразование Фурье. Он позволяет сократить количество операций до . В сравнении с вышеописанными ...

Скачать
60729
0
3

... . Упражнение. Доказать, что, если на всей оси функция y(х) дифференцируема, а j(х) – дважды дифференцируема, то функция (13.11) действительно удовлетворяет уравнению (13.9) и начальным условиям (13.10). Глава 3. Операционное исчисление   § 14. Преобразование Лапласа Понятие оригинала. Кусочно-непрерывная функция  называется оригиналом, если выполняются следующие условия: 1)  для всех ...

Скачать
56254
0
0

... Таким образом, имеется следующая задача : На основе существующих алгоритмов проанализировать возможность их применения как к последовательной обработке сигналов в реальном времени, так и к блочной обработке и оценить качество получаемых результатов . Критериями «качества» оценки спектральной плотности мощности в общем случае являются смещение этой оценки и ее дисперсия. Однако аналитическое ...

Скачать
29871
12
2

... , можно сделать вывод о том, что показатель естественного прироста населения наиболее точно прогнозируется рядом Фурье. Заключение В ходе работы было проведено моделирование и прогнозирование естественного прироста населения в РФ. Исследование было проведено с помощью следующих моделей: ·  Аддитивная модель; ·  Мультипликативная модель; ·  Одномерный анализ Фурье; ·  Регрессионная модель с ...

0 комментариев


Наверх