5.3   Расчет и выбор измерительных преобразователей

Основой для выбора преобразователей является достижение требуемой точности измерений. В нашем случае есть два контура регулирования – pBr и температуры, и для каждого применяется свой комплект датчиков и измерительных преобразователей.

5.3.1   Выбор комплекта для измерения pBr

Для измерения pBr в реакторе выбираем комплект, состоящий из датчика погружного ДПг-4М-2-1600 и нормирующего преобразователя типа П-201. В качестве сравнительного электрода применяется непроточный хлорсеребряный электрод 5268, в качестве измерительного – аргентитовый электрод ЭА-2-220. Пределы измерений устанавливаются на приборе П-201 с помощью специальных перемычек. В нашем случае выбираем пределы 1 – 7 единиц pBr. Рабочая температура в пределах +5…+70 °С. Время установления сигнала преобразователя < 10 с. Поэтому принимаем передаточную функцию датчика и нормирующего преобразователя в виде апериодического звена первого порядка.

,

где Tд = 0.05 мин.

Для регистрации pBr используется автоматический самопишущий мост типа КСУ-1М. Рассчитаем пределы погрешности измерительного комплекта для регистрации pBr. Схема комплекта приведена на рисунке 5.2.


Рисунок 5.2 – Схема комплекта для измерения pBr

Значение pBr, регистрируемое мостом, будет равно: (pBrд ± ΔpBr), где pBrд – действительное значение pBr, ΔpBr – абсолютная погрешность измерения. Эта погрешность вычисляется по формуле:

, (5.3)

где Δи – инструментальная погрешность;

Δм – методическая погрешность;

Δл – личная погрешность.

Личную составляющую погрешности определим как половину цены деления шкалы вторичного прибора Δл = 0.1 pBr.

Инструментальная погрешность: Δи = δи·ΔN1. В свою очередь, относительная погрешность вычисляется по формуле:

, (5.4)

относительные погрешности отдельных элементов комплекта вычисляются по формулам:

, (5.5)

где ΔДПГ – абсолютная погрешность датчика, ±0.1 pBr;

, (5.6)

где γП-201 – приведенная погрешность вторичного преобразователя, 0.01;

, (5.7)

где γКСУ – приведенная погрешность моста, 0.005.

Проведя вычисления по этим формулам, получаем: δДПГ = 0.045, δП-201 = 0.018, δКСУ = 0.009. Подставив полученные значения в (5.4), получаем δи = 0.054. Абсолютная погрешность Δи = 0.12 pBr.

Методическую погрешность принимаем равной нулю, т.к. статические характеристики датчика и вторичного прибора являются линейными.

Подставляя полученные результаты в (5.3), получаем значение абсолютной погрешности измерения pBr: ΔpBr = 0.15 pBr.

Полученное значение меньше, чем диапазон требуемой точности поддержания величины pBr в аппарате. Поэтому выбранный нами комплект удовлетворяет требованиям процесса с метрологической точки зрения.

5.3.2   Выбор комплекта для измерения температуры

Для измерения температуры в реакторе и в рубашке выбираем термопреобразователь сопротивления типа ТСП-0879-01 со статической характеристикой 50П. Пределы измерения: –50…+250 °С. Рабочее давление – не выше 0.4 МПа. Инерционность – 30…40 с. На основании этого принимаем постоянную времени датчика 0.2 мин.

В будущем планируется использовать регулятор типа Р17.2, имеющий входы для двух сигналов от термопреобразователей сопротивления. Поэтому в использовании нормирующих преобразователей надобности нет. Для регистрации температуры используется автоматический самопишущий мост типа КСМ-4, имеющий вход для сигнала от термопреобразователя сопротивления.

Рассчитаем пределы погрешности измерительного комплекта для регистрации температуры. Схема комплекта приведена на рисунке 5.3.


Рисунок 5.3 – Схема комплекта для измерения температуры

Значение температуры, регистрируемое мостом, будет равно (tд ± Δt), где tд – действительное значение температуры, Δt – абсолютная погрешность измерения.

Эта погрешность вычисляется по формуле:

, (5.8)

где Δи – инструментальная погрешность;

Δм – методическая погрешность;

Δл – личная погрешность.

Личную составляющую погрешности определим как половину цены деления шкалы вторичного прибора Δл = 0.5 °С.

Инструментальная погрешность: Δи = δи·ΔN1. В свою очередь, относительная погрешность вычисляется по формуле:

 , (5.9)

относительные погрешности отдельных элементов комплекта вычисляются по формулам:

, (5.10)

где ΔТСП – абсолютная погрешность датчика, ±1 °С;

, (5.12)

где γКСУ – приведенная погрешность моста, 0.005.

Проведя вычисления по этим формулам, получаем: δТСП = 0.022, δКСМ = 0.011. Подставив полученные значения в (5.4), получаем δи = 0.027. Абсолютная погрешность Δи = 1.2 °С.

Методическая составляющая погрешности возникает по причине незначительной нелинейности статической характеристики термопреобразователя и вычисляется как отклонение измеренного значения температуры от истинного:

Δм = N1 - tд. (5.13)

Пусть измеренное значение равно N1 = 45 °С. Пределы измерения температуры мостом равны 0…100 °С. Тогда чувствительность моста равна

°С/Ом.

Тогда

 Ом.

Действительное значение температуры найдем из статической характеристики датчика ТСП, имеющей вид:

,

где

Из статической характеристики получаем, что t = 44.628 °С. Тогда по формуле (5.13) получаем, что Δм = 0.372 °С.

Подставляя полученные результаты в (5.8), получаем значение абсолютной погрешности измерения температуры: Δt = 1.5 °С.

Полученное значение больше, чем диапазон требуемой точности поддержания температуры в аппарате. Однако выбранный комплект используется только для регистрации температуры, в измерительной цепи регулятора используется только один термопреобразователь сопротивления.


Информация о работе «Система управления аппаратом производства фотографической эмульсии»
Раздел: Информатика, программирование
Количество знаков с пробелами: 63924
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
103640
2
0

... полностью удовлетворял потребности астрономов. В конце XIX и особенно в XX веке характер астрономической науки претерпел органические изменения. Центр тяжести исследований переместился в область астрофизики и звездной астрономии. Основным предметом исследования стали физические характеристики Солнца, планет, звезд, звездных систем. Появились новые приемники излучения – фотографическая пластинка и ...

Скачать
107850
6
0

... теряет смысл. Извлечение серебра из промпродуктов, содержащих хлорид серебра (патент Российской Федерации RU2170277). Изобретение относится к металлургии благородных металлов, в частности к аффинажу серебра. Способ получения серебра из промпродуктов, содержащих хлорид серебра, включает растворение в сульфитном растворе и нагревание. При этом восстановление серебра из сульфитного раствора ведут при ...

Скачать
232120
0
0

... то уж никакой искорки наверняка не появится». Первая половина XX века стала великим классическим периодом в развитии фотографии. Люди, которые начинали как фотографы-пейзажисты, в определенной мере связанные с живописью, привели фотографию к вершинам технического совершенства, к созданию потрясающего разнообразия зрительных образов и средств их выражения, к великой глубине проникновения, сделали ...

Скачать
35774
32
0

... наибольшая, а в светлых — наименьшая. Хотя все участки текста, штрихов и тонов изображений на печатной форме при способе традиционной глубокой растровой печати, изготовленной пигментным способом (растровая технология), расчленены на растровые элементы, имеющие одинаковые размеры и в большинстве случаев квадратную форму, на оттиске растровые элементы различимы (с помощью лупы 10х) только в светах ...

0 комментариев


Наверх