1 S TT Q

СІ C

R

“Reset” R щQ

Мал. 2.6. Базовий елемент регістра.


Схема РАМК містить 6 таких елементів, а схема РМК - 21. При побудові схеми сигнали щT1..щT21 будемо знімати з інверсних виходів елементів регістрів. Кількість мікросхем ПЗП визначимо за формулою: NПЗП­=]R/3[, де R - розрядність мікрокоманди R=21, NПЗП=7. Для зберігання мікропрограми досить однієї лінійки ПЗП, оскільки QПЗП=8, тобто одна мікросхема розрахована на зберігання 256 трьохбітових комбінацій, а в нашому випадку потрібно тільки 38. При побудові схеми будемо записувати в РАМК інверсію адреси, а до ПЗП будемо подавати адресу з інверсних виходів елементів регістра, таким чином, ми заощадимо 6 елементів-інверторів у СФА. З врахуванням вищесказаного побудуємо схему автомата з примусовою адресацією мікрокоманд(мал. 2.7).




41


3.СИНТЕЗ АВТОМАТА З ПРИРОДНОЮ АДРЕСАЦІЄЮ МІКРОКОМАНД


3.1. Принцип роботи автомата.


При природній адресації микрокоманд існує три формата МК (мал. 3.1.).


П 1 FY m ОМК


П 1 FX l1 FA r УМК1 П 1 Ж l1 FA r УМК2


Мал.3.1. Формати мікрокоманд автомата з природною адресацією..


Тут формат ОМК відповідає операторній вершині, УМК1-умовній, а УМК2-вершині безумовного переходу. При подачі сигналу “пуск" лічильник ЛАМК обнуляється, і за сигналом СІ відбувається запис МК до регістра. СФМО формує відповідні МО при П=1 або видає на всіх виходах нулі при П=0. СФА в залежності від П і вмісту поля FX, формує сигнали Z1 і Z2. Сигнал Z1 дозволяє проходження синхроімпульсів на лічильний вхід ЛАМК, а Z2 дозволяє запис до лічильника адреси наступної МК з приходом синхроімпульсу.

Визначимо розрядність полів. l=]log2(L+1)[, де L-число умовних вершин. L=6, l=3

m=]log2T[ Т- число наборів мікрооперацій, що використовуються в ГСА, в нашому випадку Т=17, m=5

r=]log2 Q[, Q - кількість мікрокоманд.


3.2.Перетворення початкової ГСА.


Перетворення буде полягати в тому, що до всіх операторних вершин, пов'язаних з кінцевою, вводиться сигнал y0, а між всіма умовними вершинами, які пов'язані з кінцевою, вводиться операторна вершина, що містить сигнал y0. Крім цього, в ГСА вводяться спеціальні вершини безумовного переходу X0, відповідні формату УМК2. Введення таких вершин необхідне для виключення конфліктів адресації мікрокоманд. У автоматі з природною адресацією (рис3.2.) при істинності(помилковість) логічної умови перехід здійснюється до вершини з адресою на одиницю великим, а при (помилковість)істинності ЛУ перехід відбувається за адресою, записаною в полі FA. У нашому випадку будемо додавати одиницю при істинності ЛУ або при переході з операторной вершини. Якщо в одній точці сходиться декілька переходів по “1" або з операторної вершини, то всі вершини з яких здійснювався перехід, повинні були б мати однакову (на одиницю меншу ) адресу, ніж наступна команда. Але це неможливо.



Z1 +1

сі Z2 А ЛАМК



“Пуск”


Информация о работе «Прикладная теория цифровых автоматов»
Раздел: Технология
Количество знаков с пробелами: 43027
Количество таблиц: 23
Количество изображений: 8

Похожие работы

Скачать
39975
7
1

... булевої алгебри. Аналітичний спосіб задання булевих функцій займає особливе місце в проектуванні цифрових машин. Фактично, всі перетворення над булевими ф-ціями, необхідні для побудови цифрових машин, ведуться на аналітичному рівні. Розглянемо області визначення булевоі ф-ції. Як уже відмічалось, між двійковими наборами і двійковими числами існує взаємнооднозначна відповідність. Отже, існує 2n рі ...

Скачать
28503
20
4

... определенным называется абстрактный цифровой автомат, у которого функция переходов или функция выходов, или обе эти функции определены для всех пар переходов (xi,aj). Частичным называется абстрактный цифровой автомат, у которого функция переходов или функция выходов, или обе эти функции определены не для всех пар переходов (xi,aj). Абстрактный цифровой автомат называется инициальным, если на ...

Скачать
10828
9
6

... a24(Y8) 10100 X5X6 X1D1 D1 D3 D3 R S a21 a25(Y3) 11001 X5X6 D1 D2 D5 T 2.2.3. Кодування станів Кодування станів буде проводитися за таким алгоритмом: 1.   Кожному стану автомата аm (m = 1,2,...,M) ставиться у відповідність ціле число Nm, рівне числу переходів у стан аm (Nm дорівнює числу появ аm у поле таблиці ). 2.   Числа N1, N2, ..., ...

Скачать
113094
120
81

... состоянии am. Рассмотренные выше абстрактные автоматы можно разделить на: 1)  полностью определенные и частичные; 2)  детерминированные и вероятностные; 3)  синхронные и асинхронные; Полностью определенным называется абстрактный цифровой автомат, у которого функция переходов и функция выходов определены для всех пар ( ai, zj). Частичным называется абстрактный автомат, у которого функция ...

0 комментариев


Наверх