4.3.2 Двоичное вычитание


Вычитание в двоичной системе выполняется аналогично вычитанию в десятичной системе счисления. При необходимости, когда в некотором разряде приходится вычитать единицу из нуля, занимается единица из следующего старшего разряда. Если в следующем разряде нуль, то заем делается в ближайшем старшем разряде, в котором стоит единица. При этом следует понимать, что занимаемая единица равна двум единицам данного разряда, т. е. вычитание выполняется по следующему правилу:


Пример 4.7 Вычитание двоичных чисел и


11010, 1011
1101, 01111

1101, 00111

Конечно, математически вычитание выполнить несложно. Однако, если поступать таким образом, то к примеру в ЭВМ придется для выполнения сложения и вычитания иметь два блока: сумматор и вычитатель. Поэтому поступают следующим образом: вычитание можно представить как сложение положительного и отрицательного чисел, необходимо только подходящее представление для отрицательного числа.

Рассмотрим четырехразрядный десятичный счетчик, какие в автомобиле отсчитывают пройденный путь. Пусть он показывает число 2, если вращать его в обратном направлении, то сначала появится 1, затем 0, после 0 появится число 9999. Сложим, к примеру, 6 с этим числом:

+ 6
9999

10005


Если пренебречь единицей переноса и считать 9999 аналогом –1, то получим верный результат: .

Число 9999 называется десятичным дополнением числа 1. Таким образом, в десятичной системе счисления отрицательные числа могут быть представлены в форме десятичного дополнения, а знак минус можно опустить.

Двоичное дополнение числа определяется как то число, которое будучи прибавлено к первоначальному числу, даст только единицу переноса в старшем разряде.


Пример 4.8 Двоичное дополнение числа


+ 010101111 – число
101010001 – двоичное дополнение

1000000000 – сумма

 – единица переноса


Для получения двоичного дополнения необходимо:

получить обратный код, который образуется инвертированием каждого бита:

010101111 – число
101010000 – обратный код

прибавить к обратному коду единицу, образовав таким образом дополнительный код:

+ 101010000 – обратный код
1

101010001 – дополнительный код

Пример 4.9 Вычитание в дополнительном коде


– обратный код,

– дополнительный код.

1001012=510 (верно).


4.3.3 Двоичное умножение


Умножение двух двоичных чисел выполняется так же, как и умножение десятичных. Сначала получаются частичные произведения и затем их суммируют с учетом веса соответствующего разряда множителя.

Отличительной особенностью умножения в двоичной системе счисления является его простота, обусловленная простотой таблицы умножения. В соответствии с ней, каждое частичное произведение или равно нулю, если в соответствующем разряде множителя стоит нуль, или равно множимому, сдвинутому на соответствующее число разрядов, если в соответствующем разряде множителя стоит единица. Таким образом, операция умножения в двоичной системе сводится к операциям сдвига и сложения.

Умножение производится, начиная с младшего или старшего разряда множителя, что и определяет направление сдвига. Если сомножители имеют дробные части, то положение запятой в произведении определяется по тем же правилам, что и для десятичных чисел.

Пример 4.10 Умножение двоичных чисел и




Информация о работе «Системы счисления»
Раздел: Цифровые устройства
Количество знаков с пробелами: 95849
Количество таблиц: 35
Количество изображений: 321

Похожие работы

Скачать
32294
6
4

... умножать на основание новой системы счисления до тех пор, пока в новой дроби не будет нужного количества цифр, которое определяется требуемой точностью представления дроби. Правильная дробь в новой системе счисления записывается из целых частей произведений получающихся при последовательном умножении, причем первая целая часть будет старшей цифрой новой дроби. Рассмотрим в качестве примера ...

Скачать
11095
1
1

... представления в них достаточно больших чисел, так как при этом получается чрезвычайно громоздкая запись чисел или требуется очень большой алфавит используемых цифр. В ЭВМ применяют только позиционные системы счисления, в которых количественный эквивалент каждой цифры алфавита зависит не только от вида этой цифры, но и от ее местоположения в записи числа. Позиционные системы счисления В ...

Скачать
54749
16
10

... последовательности 0 и 1. Например целое неотрицательное число А2=Т 111100002 будет храниться в ячейке следующим образом: 1 1 1 1 0 0 0 0 Значит, мы можем записать все числа от 0 до 255 в двоичной системе счисления в 1 ячейке памяти. 2.2 Представление чисел в компьютере   Целые числа в компьютере хранятся в ячейках памяти, в этом случае каждому разряду ячейки памяти соответствует ...

Скачать
24900
1
0

... рождения (год, число, месяц). 4. Подведение итогов. Домашнее задание. Учить записи в тетрадях. Заключение В данной курсовой работе было рассмотрена роль и место элективных курсов в предпрофильном обучении, а также разработан элективный курс не тему «система счисления» в предпрофильном обучении информатике. В первой части работы были выявлены главные особенности предпрофильной п

0 комментариев


Наверх