2.2 Символика Виета и развитие алгебры.
Виет считается одним из основоположников алгебры. Но его интерес к алгебре первоначально связан с возможными приложениями к тригонометрии и геометрии. А задачи тригонометрии и геометрии, в свою очередь, приводили Виета к важным алгебраическим обобщениям. Так было, например, с решением уравнений третьей степени в неприводимом случае и с исследованием некоторых классов разрешимых алгебраических уравнений высших степеней.
Свою алгебру Виет ценил очень высоко. Он не пользовался словом «алгебра», эту науку он зазывал «искусством анализа». Виет различал видовую логистику и числовую логистику. Термин «логистика» означает совокупность арифметических приемов вычислений, «вид» имел смысл символа.
Видовая логистика Виета после внесенных им в символику усовершенствований представляла собой буквенное исчисление. Ее объектами служат геометрические и псевдогеометрические образы, связанные между собой различными соотношениями. Виет был последователем древних: он оперировал такими величинами, как сторона, квадрат, куб, квадратоквадрат, квадратокуб , и т. д., образующими своеобразную лестницу скаляров. Действия над скалярами у Виета, как и у древних геометров, подчинены «закону однородности»: составленные из неизвестных и известных величин уравнения должны быть однородными относительно всех их вместе взятых. Умножению чисел у Виета соответствует образование нового скаляра, размерность которого равна сумме размерностей множителей. Операция, соответствующая делению чисел, дает новую величину, размерность которой равна разности размерностей.
Виет разработал символику, в которой наравне с обозначением неизвестных впервые появились знаки для произвольных величин, называемых в настоящее время параметрами. Для обозначения скаляров он предложил пользоваться прописными буквами: «искомые величины будут обозначены буквой А или другой гласной Е, I, О, U, Y, а данные – буквами B, D, G или другими согласными»
Слово «коэффициент» введено Виетом. Рассматривая выражение
(А + В)2 + D(A + В),
он назвал величину D, участвующую с А + В в образовании площади, longitude ciefficiens, т. е. содействующей длиной.
Из знаков Виет употреблял +, — и дробную черту. Современные скобки у него заменяла общая черта на всем выражением.
Символика Виета страдала недостатками, в некоторых отношениях она была менее совершенна, чем у его предшественников и современников. Виет для записи действий употреблял слова: in у него означало умножение, aequatur заменяло знак равенства. Словами же выражались степени различных величин. Для трех низших степеней он взял названия из геометрии, например, А3 называл A cubus. Высшим степеням он давал геометрические наименования, происходящие от низших: А9, например,— A cubo-cubo-cubus. Известная величина В представлялась как величина девятой степени записью solido-solido-solidum. Если сторона (latus) умножается на неизвестную величину, то она называется содействующей) (coefficiens) при образовании площади.
Уравнение А3 + 3ВА = D Виет записывал так: А cubus + В planum in 43 aequatur D solido, а уравнение ВАn –Аm+n = Z так:
В parabola in А gradum — А potestate aequatur Z homogenae (В, умноженное на градус А, минус А в степени равняется однородной Z),
Обозначения в числовой логистике выглядели проще:
N – первая степень, Q – квадрат, С – куб и т. д. Уравнение x3 - 3x = 1 записывалось в виде 1С – 3N aequatur 1»
Неудобства символики Виета связаны и с требованием однородности. Как и древние греки, Виет считал, что сторону можно складывать только со стороной, квадрат – с квадратом, куб – с кубом и т. д. В связи с этим возникал законный вопрос: имеют ли право на существование уравнения выше третьей степени, поскольку в пространственном мире четвертая, пятая и т. д. степени аналогов не имеют.
Для придания уравнению однородности Виет после входящих в него параметров писал planum (плоскость), solidum (тело) и т. д. Вот как выглядит в записи Виета уравнение х3 + ЗВ2х = 2z3: A cubus + В plano 3 in A aequari Z solido 2.
Правило Тартальи для решения уравнения третьей степени у Виета имело вид:
.
Символики Виета придерживался впоследствии П. Ферма. От «тирании» однородности просто и остроумно сумел освободиться Декарт (об этом будет сказано дальше).
Может показаться, что Виет ввел в символику алгебры совсем немного. Буквами для обозначения отрезков пользовались еще Евклид и Архимед, их успешно применяли Леонардо Пизанский, Иордан Неморарий, Николай Орем, Лука Пачоли, Кардано, Бомбелли и многие другие математики. Но сделал существенный шаг вперед Виет. Его символика позволила не только решать конкретные задачи, но и находить общие закономерности и полностью обосновывать их. Это, в свою очередь, способствовало выделению алгебры в самостоятельную ветвь математики, не зависящую от геометрии. «Это нововведение (обозначение буквами данных и искомых) и особенно применение буквенных коэффициентов положило начало коренному перелому в развитии алгебры: только теперь стало возможным алгебраическое исчисление как система формул, как оперативный алгоритм».
Сказанное, легко подтвердить примерами. Пусть х1, x2 – корни квадратного уравнения. Перемножим разности x – x1 и х – х2: (x – x1)(х – х2)=х2 – (х1 + х2)х + х1х2.
Обозначим (x – x1)(х – х2) = х2 + px + q, сравнивая с предыдущим, получим p = – (х1 + х2), q = x1x2.
Выполним то же самое для кубического уравнения:
(x – x1)(х – х2)(x – x3)=x3 – (х1 + х2 + x3)x2 + (x1x2 + x1x3 + x2x3)x – x1x2x3.
Сравним результат с выражением (x – x1)(х – х2)(x – x3) = x3 + a1x2 + a2x + a3.
Это дает a1 = – (x1 + x2 + x3)
a2 = x1x2 + x1x3 + x2x3
a3= – x1x2x3.
Такой результат для квадратного уравнения был известен Кардано (в случае положительных корней – еще и раньше); Кардано отметил свойство корней кубического уравнения относительно коэффициента при х2. Но никакого обоснования в общем виде дать он не мог; это сделал Виет для уравнений до пятой степени включительно.
Преимущества символики предоставили Виету возможность не только получить новые результаты, но и более полно и обоснованно изложить все известное ранее. И если предшественники Виета высказывали некоторые правила, рецептуры для решений конкретных задач и иллюстрировали их примерами, то Виет дал полное изложение вопросов, связанных с решением уравнений первых четырех степеней.
Рассмотрим ход рассуждений Виета при решении кубического уравнения.
Возьмем уравнение x3 + 3ax = 2b. Положим a = t2 + xt.
Найдем отсюда
х = и подставим в исходное уравнение. Получим + 3a = 2b, откуда для определения t наводим квадратное уравнение относительно t3: (t3)2 + 2bt3 – а3 == 0.
Отсюда определится t, а затем и х. Заметим еще, что подстановка а = t2 + xt приводит исходное уравнение к виду
(х + t)3 – t3 = 2b,
которое вместе с уравнением (х + t)t = a, (х + t)3t3 = a3 дало бы возможность применить метод Тартальи и дель Ферро. Но Виет таким путем не пошел.
Рассмотрим теперь пример. Найдем методом Виета действительный корень уравнения
х3 + 24x=56.
Здесь а=8, b=28. Запишем уравнение относительно t: (t3)2 + 56t3 - 83 - 0.
Решим его:
t3= –28 = – 2836 t1 = = 2 t2 = = –4.
Найдем теперь х:
x1 = = –2 , x2 = = 2 = x1.
При изложении метода Феррари для решения уравнения четвертой степени Виет провел аналитически выкладки, указанные выше, и получил уравнение, содержащее основную неизвестную А и вспомогательную Е (х и t у Феррари).
Виет, верный последователь древних, оперировал только рациональными положительными числами, которые он обозначал буквами. Если в результате подстановки в уравнение значений параметров неизвестное оказывалось иррациональным, он давал этому случаю особое обоснование.
В качестве примера такого обоснования приведем «геометрическое» решение кубического уравнения по способу дель Ферро – Тартальи.
В записи Виета уравнение имело вид A3 + 3BA = D.
Известное решение: А является разностью «сторон» которые образуют площадь В и разность кубов которых равна D. Если обозначить «стороны» буквами u и v, то uv = B, u3 – u3 =D, A= u –v.
Виет придавал решению «геометрическое» толкование; он вместо D solidum записывал произведение В planum на D, т. е. получал уравнение A3 + 3ВA= BD.
Затем он определял четыре величины, образующие «геометрический ряд», так, чтобы прямоугольник, построенный на средних или на крайних, по площади равнялся В, а разность крайних была D. Тогда A будет разностью средних.
Поясним сказанное. Обозначим эти четыре величины через z, u, v и t. Тогда можно записать
z:u = u:v = v:t, zt = uv = B, z – t = D, A = u – v.
Если в решении Тартальи D заменить на BD, то оба решения совпадут.
Способ Виета означает замену кубического корня двумя средними геометрическими, что полностью соответствует духу древних греков.
Из получившихся пропорций найдем
u3 = z2t, v3 = zt u3 – v3 = zt(z – t) = BD
Виет особо рассматривал трехчленные уравнения различных степеней и в первую очередь интересовался количеством их корней, имея в виду только положительные корни. Отрицательные корни он определял как корни уравнения, в котором неизвестное х заменено на –у. Виет , получал трехчленные уравнения из квадратных; он поступал так, чтобы число положительных корней оставалось прежним. При этом он пользовался подстановкой х = kym или специальными приемами.
Один из приемов Виета выглядит так. Пусть дано уравнение
x2 + ах = b, а, b>0.
Для получения уравнения четвертой степени возведем левую и правую части уравнения в квадрат:
(х2 + ах - b)3 = x4 + a2x2 + b2 + 2ax3 – 2bx2 – 2abx = 0
Полученное уравнение можно переписать:
x4 + 2ах3 + 2а2x2 – а2x2+ b2 – 2bх2 – 2abx = 0.
Исключим 2ах3 + 2a2x2, воспользовавшись тем, что b = х2 + ax:
2ах(х2 + аx) = b2аx, 2ах3 + 2a2x = 2abx.
Тогда x4 + 2abx – а2x2 + b2 – 2bx2 – 2abx = 0, x4 – a2x2 + b2 – 2bx2 = 0.
Теперь осталось исключить x2; из исходного уравнения найдем: x2 = b – ax и подставим в последнее:
x4 – (a2 + 2b)x2 + b2 = 0, x4 – (a2 + 2b)(b – ax) + b2 = 0, x4 + (2ab + a3)x = b2 + a2b
Полученное уравнение четвертой степени имеет те и только те положительные корни, которые были у исходного квадратного.
Для нахождения трехчленного уравнения третьей степени Виет в качестве исходного брал уравнение
ax – x2 = ab
и умножал его левую и правую части на х + b; это при водило к уравнению
(а – b)х2 – х3 = ab2
с теми же положительными корнями, которые были у квадратного.
И еще один частный вопрос рассмотрел Виет. В уравнении
ахm – xm+n = b
имеющем по условию два корня, он определил коэффициенты, при которых корни уравнения имели бы заданные значения.
Пусть эти корни у и z. Тогда
a =, b =
Ту же задачу он решил относительно уравнения
xm+n + axm = b, где m + n – число четное, m – нечетное.
Чрезвычайно важно то, что Виет распространил известные ранее частные преобразования на все алгебраические уравнения. Подстановку х = у + k, применявшуюся Кардано для исключения из кубического уравнения члена второй степени, он применил к уравнениям любой степени. Также известную Кардано обратную подстановку х = k/y Виет употреблял, чтобы освободиться в некоторых случаях от отрицательных коэффициентов и иррациональностей. Например, уравнение х4 – 8х = подстановкой х = он преобразовал к виду y4 + 8у3 = 80. Подстановкой х = y Виет преобразовывал уравнение n-й степени так, что коэффициент при члене (n -1)-й степени (a) становился равным b, в то время как старший коэффициент оставался равным единице. Подстановку х = ky он применял, чтобы избавиться от дробных коэффициентов.
Особый интерес представляет исследование Виета по составлению уравнений из линейных множителей и по установлению связей между корнями уравнения и его коэффициентами. Первоначальные сведения и по тому, и по другому вопросу были у Кардано.
Кардано в ту пору, когда еще не знал метода дель Ферро и Тартальи, решал некоторые уравнения третьей степени разложением на множители. В уравнении
2х3 + 4x2 + 25 = l6x + 55
с этой целью он прибавлял к обеим частям 2x2 + 10x + 5. Затем преобразовывал его к виду (2х + 6)(х2 + 5) = (х + 10)(2х + 6), сокращал на 2х + 6 и получал квадратное уравнение.
Кардано же при нахождении положительного корня уравнения х3 + b = ах складывал его почленно с уравнением у3 = ay + b, получал из них квадратное уравнение делением на х минус известный отрицательный корень х – (–у). Такое преобразование позволило Кардано установить, что коэффициент при члене второй степени в правой части кубического уравнения равен сумме его корней. Это был первый шаг к установлению зависимости между корнями и коэффициентами алгебраического уравнения.
Виет составил полные уравнения с заданными положительными корнями вплоть до пятой степени и показал, как образуются коэффициенты при xn-1, xn-2, xn-3, ... Он установил, что эти коэффициенты при условии, что старший коэффициент равен 1 или –1 (свободный член в правой части должен был стоять со знаком +), представляют собой взятые с чередующимися знаками суммы: самих корней, парных произведений их, произведений корней, взятых по три, и т. д. Работа, в которой Виет подробно рассмотрел это утверждение, до нас не дошла. Неизвестно, как он поступал в том случае, когда уравнение имеет и отрицательные корни. Но, скорее всего, это не представляло для Виета особых трудностей: достаточно было сделать в уравнении замену х = –у и можно оперировать с положительными корнями нового уравнения. Такие примеры в его работах встречались. Если уравнение х3 + q = рх имеет два положительных корня х1 и х2, то уравнение y3 = ру + q – один положительный корень у1 = –х3 причем у1 = х1 + х2 (это знал Кардано), x12 + x22 + x1x2 = p, x1x2(x1 + x2) = q.
Как видим, в исследованиях Виета встречались начала теории симметрических функций и разложения многочленов на линейные множители, что вскоре привело к открытию основной теоремы алгебры о числе корней уравнения произвольной степени. Эти исследования Виета продолжили математики следующего поколения Т. Гарриот (1560— 1621), А.Жирар (1595-1632), Р. Декарт (1596-1650).
... neat as ninepence - чистенький, аккуратный; с иголочки; a twice-told tale - старая история, что-либо часто повторяемое и потому хорошо известное. 2. Значения числовых компонентов в английских фразеологических единицах Имена числительные, являясь абстрактным показателем количества однородных предметов, обозначением их счета, замкнуты в своеобразную категорию количественных слов, которые лишены ...
... схемы; 9) способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики, как геометрия, Сторонники шестого подхода считают, что математическое мышление является мышлением теоретическим и имеет такую же последовательность становления от эмпирического к аналитическому, к планирующему, рефлексирующему (Р. Атаханов, В.В. Давыдов, Ле Тхи Кхань Кхо, ...
... с активными познавательными обследовательскими действиями, со способностью к замещению предметов посредством условных знаков, символов».(7,с.126) 3. Моделирование в развитии математических представлений дошкольников Поиск эффективных средств познавательного развития детей, выявление условий становления познавательной деятельности в дошкольном детстве является темой научных работ многих ...
... заданное его качество, определение оптимальных (с точки зрения принятого критерия) норм дежурного обслуживания, надобность в котором возникает непланомерно, нерегулярно. С использованием метода математического моделирования можно определить, например, оптимальное количество автоматически действующих машин, которое может обслуживаться одним рабочим или бригадой рабочих и т.п. Типичным примером ...
0 комментариев