0.432651 S.D. dependent var 1.020056

S.E. of regression 0.768332 Akaike info criterion -0.521871

Sum squared resid 1240.293 Schwarz criterion -0.492416

Log likelihood -2434.702 F-statistic 161.9816

Durbin-Watson stat 1.701390 Prob(F-statistic) 0.000000

Качество этой модели выше, чем аддитивной, так как R2 увеличился до 0.43, но все равно это очень низкое значение. Анализ t-статистик показывает значимость всех коэффициентов кроме наличия телефона, подъездной дороги, леса и водоема. Коэффициенты при переменных не поменяли знаки, кроме коэффициента наличия электричества, но это, конечно же, логично, наличие электричества на земельном участке должно увеличивать цену. Как и в случае с аддитивной моделью были построены регрессии для 11 направлений. R2 этих моделей увеличился и колеблется в пределах 0.45-0.55. Как и прежде значимы коэффициенты расстояния от МКАД у всех направлений, в 6 из 11 регрессиях значим коэффициент наличия магистрального газа. По сравнению с аддитивной моделью более часто встречается значимость площади участка. Таким образом, значимыми факторами, влияющими на формирование цен являются наличие магистрального газа, площадь участка, расстояние от МКАД, остальные факторы значимы в единичных случаях. Рассмотрим эластичности цены земельного участка по этим значимым факторам у мультипликативной модели, построенной для всех участков. Коэффициент при MKAD равный –0.56, означает, что увеличение расстояния от Москвы на 1%, уменьшает цену на 0.56%, напомним, что в аддитивной модели эластичность цены участка по расстоянию от МКАД получилась равной –0.51, т.е. тенденция оказалась похожей. Коэффициент при площади участка равный –0.07, означает, что увеличение площади участка на 1% уменьшает цену на 0.07%. Положительный коэффициент при магистральном газе равный 0.36, означает, что земельный участок с магистральным газом стоит на 36% дороже аналогичного участка без магистрального газа. Для регрессии, характеризующей все участки Московской области значимыми оказались так же коэффициенты при электричестве, водопроводе и канализации, что, согласно модели, должно увеличивать стоимость аналогичных участков без этих характеристик на, соответственно, 12.2%, 11.7% и 45%.

На следующем этапе была сделана попытка определения совместного влияния факторов. При этом анализировались следующие бинарные переменные (1-есть, 0 – нет):

EW – электричество*водопровод;

EG – электричество*газ;

EWG – электричество*водопровод*газ;

EWGR - электричество*водопровод*газ*дорога;

GW – газ*канализация.

Остальные комбинации не имело смысл анализировать в связи с очень малыми объемами данных. Наилучшие результаты были получены для переменных EG, EWG и GW, используя эти переменные можно было получать регрессии с R2=0.40-0.55.

Кроме этого были сделаны попытки ввести в уравнение такие переменные как lnSQU*GAS и lnMKAD*GAS, но построенные регрессии обладали слабой объясняющей силой.

В качестве примера приведем следующую модель:

ln(PRICE) = 7.6649261 + 0.090223682*EL + 0.22148706*WAT + 0.54363961*GAS + 0.46655554*WC - 0.074224116*ln(SQU) - 0.57763383*ln(MKAD) - 0.31814015*EWG

Результаты оценивания приведены в таблице 10.

Таблица 10


Оценивание мультипликативной модели МРА, учитывающей совместное влияние факторов, для всех участков Московской области.

LS // Dependent Variable is ln(PRICE)

Sample(adjusted): 1 2112

Variable Coefficient Std. Error t-Statistic Prob.

C 7.664926 0.103959 73.73057 0.0000

EL 0.090224 0.043134 2.091697 0.0366

WAT 0.221487 0.044383 4.990385 0.0000

GAS 0.543640 0.062057 8.760311 0.0000

WC 0.466556 0.096483 4.835628 0.0000

ln(SQU) -0.074224 0.032571 -2.278865 0.0228

ln(MKAD) -0.577634 0.019395 -29.78319 0.0000

EWG -0.318140 0.074138 -4.291179 0.0000

R-squared 0.441442 Mean dependent var 5.765975

Adjusted R-squared 0.439584 S.D. dependent var 1.020056

S.E. of regression 0.763624 Akaike info criterion -0.535579

Sum squared resid 1226.888 Schwarz criterion -0.514157

Log likelihood -2423.227 F-statistic 237.5489

Durbin-Watson stat 1.697318 Prob(F-statistic) 0.000000


Исключив незначимые переменные, мы получили регрессия с такой же объяснительной силой R2=0.44. Коэффициент при EWG значим и отрицателен, что говорит от том, что наличие на участке электричества, водопровода и магистрального газа уменьшает его цену на 31.7%, что является абсурдным, наличие коммуникаций должно увеличивать цену, исключив факторы EL, WAT, GAS и оставив лишь их совместное влияние, получаем следующую зависимость:

ln(PRICE) = 7.8825006 + 0.54644853*WC - 0.036845384*ln(SQU) - 0.60703765*ln(MKAD) + 0.29540937*EWG

Результаты оценивания приведены в таблице 11.

Таблица 11


Оценивание мультипликативной модели МРА, учитывающей только совместное влияние факторов, для всех участков Московской области.

LS // Dependent Variable is ln(PRICE)

Sample(adjusted): 1 2112

Variable Coefficient Std. Error t-Statistic Prob.

C 7.882501 0.102565 76.85370 0.0000

WC 0.546449 0.098895 5.525531 0.0000

SQU -0.036845 0.032168 -1.145408 0.2522

MKAD -0.607038 0.019320 -31.41957 0.0000

EWG 0.295409 0.045849 6.443112 0.0000

R-squared 0.408438 Mean dependent var 5.765975

Adjusted R-squared 0.407315 S.D. dependent var 1.020056

S.E. of regression 0.785301 Akaike info criterion -0.481012

Sum squared resid 1299.382 Schwarz criterion -0.467623

Log likelihood -2483.850 F-statistic 363.6893

Durbin-Watson stat 1.673356 Prob(F-statistic) 0.000000

Исключив переменные, мы получили регрессия с меньшей объяснительной силой R2=0.41 и с незначимым коэффициентом при SQU. Коэффициент при EWG значим и теперь положителен, что говорит от том, что наличие на участке электричества, водопровода и магистрального газа увеличивают его цену на 29.5%, что является более логичным по сравнению с предыдущей моделью.


Для проверки полученных результатов, а также в целях дополнительного анализа была взята база данных одного их агентств недвижимости («Новый город» www.newcity.ru), всего были исследованы предложения по 50 участкам Московской области за период 2001г. Попытки построить вышеуказанные регрессии также не увенчались успехом: добиться повышения коэффициента R2 выше 0,4-0,5 не удалось.


Была предпринята попытка построить регрессии по 6 оценочным зонам. Схема оценочного зонирования Московской области 1999 года приведена в Приложении 3. На рисунке 4 представлены медиана, 25% и 75% квантили цен предложения 1999 года на земельные участки по 6 оценочным зонам. В таблице 12 указаны основные характеристики: максимальное и минимальное значения, среднее, стандартное отклонение, дисперсия. Напомним, что цены предложения 1999 года оценивались в долларах США/100м2.

Таблица 12

Основные статистические характеристики исследуемой выборки (по оценочным зонам).

Оценочная зона

Объем выборки

Минимум

Максимум

Среднее

Стандартное отклонение

Дисперсия

ЗОНА1

97

125.00

5000.00

1400.1

1003.1

1006387.4

ЗОНА2

328

80.00

3000.00

903.2

616.6

380243.3

ЗОНА3

503

53.00

5000.00

636.1

594.1

353042.1

ЗОНА4

522

19.00

9908.00

407.7

563.2

317199.0

ЗОНА5

206

29.00

3000.00

264.9

355.3

126257.8

ЗОНА6

455

17.00

4167.00

212.3

303.8

92311.2


Рисунок 3. Графическое представление основных статистических характеристик (максимум, минимум, 25% и 75% квантили, медиана).


Несмотря на хорошо просматриваемую зависимость - цены уменьшаются с увеличением зоны, а значит и с увеличением расстояния от МКАД, данную закономерность не удалось описать хорошей регрессионной моделью. Полученные R2 были чрезвычайно малы (0,1-0,2), что в данном случае выглядит логичным: для каждой оценочной зоны назначается единая цена.

На последнем этапе анализа была предпринята попытка включить влияние принадлежности к оценочной зоне в модель мультипликативной регрессии, а также исключить выбросы при моделировании. Выбросами в МРА являются объекты с аномально большими отклонениями от основного «облака» исходных данных. Выбросы могут быть быть обусловлены по крайней мере тремя причинами. Во-первых, ошибка могла вкрасться при вводе данных. Если ошибки происходят часто, то это может привести не только к искажению информации по отдельным объектам, но и повлиять на модель в целом. Во-вторых, выбросы могут быть вызваны некорректностью отбора продаж. Такие продажи необходимо исключить или скорректировать. В-третьих, выброс может быть обусловлен нетипичными характеристиками конкретного объекта или нетипичной комбинацией характеристик. В целом, выбросы представляют собой обычное явление для любой модели.

Для определения влияния принадлежности к одной из 6 оценочных зон необходимо ввести 5 бинарных переменных:

zi1 =

zi2 =

zi3 =

zi4 =

zi5 =

Таким образом, необходимо оценить следующую регрессию:

ln(P)i= ln(A0)+A1*ln(Xi)(1) +…+A10*ln(Xi)(1) + С1Z(1)i+…+ C5Z(5)i , где P – цена предложения в долларах США/100 кв.м., А0 – случайная величина, А1, … , А10 и С1, …, С5 – коэффициенты, соответственно, при Х1, …, Х10 – факторы от EL до MKAD и Z(1), …,Z(5) – принадлежность к оценочной зоне.

Общая модель для всех участков Московской области:

ln(PRICE) = 6.4460467 + 0.12154927*EL + 0.11392791*WAT + 0.30749192*GAS + 0.44393784*WC + 0.045741459*TEL - 0.045319947*ROAD + 0.0045992639*FOREST - 0.07482143*RIVER - 0.10782937*ln(SQU) - 0.30903654*ln(MKAD) + 0.87181037*Z1 + 0.71476015*Z2 + 0.65921317*Z3 + 0.32907382*Z4 + 0.18905652*Z5

Результаты оценивания приведены в таблице 13.

Таблица 13


Оценивание мультипликативной модели МРА, учитывающей влияние фактора принадлежности к оценочной зоне, для всех участков Московской области.

LS // Dependent Variable is lnPRICE

Included observations: 2051 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C 6.446047 0.193418 33.32695 0.0000

EL 0.121549 0.043228 2.811790 0.0050

WAT 0.113928 0.037977 2.999885 0.0027

GAS 0.307492 0.045772 6.717871 0.0000

WC 0.443938 0.102832 4.317103 0.0000

TEL 0.045741 0.108094 0.423162 0.6722

ROAD -0.045320 0.037414 -1.211311 0.2259

FOREST 0.004599 0.037861 0.121478 0.9033

RIVER -0.074821 0.037897 -1.974332 0.0485

lnSQU -0.107829 0.032432 -3.324789 0.0009

lnMKAD -0.309037 0.039653 -7.793558 0.0000

Z1 0.871810 0.146029 5.970126 0.0000

Z2 0.714760 0.106769 6.694425 0.0000

Z3 0.659213 0.074112 8.894778 0.0000

Z4 0.329074 0.056780 5.795573 0.0000

Z5 0.189057 0.066052 2.862228 0.0042

R-squared 0.450055 Mean dependent var 5.722011

Adjusted R-squared 0.446001 S.D. dependent var 0.998586

S.E. of regression 0.743259 Akaike info criterion -0.585651

Sum squared resid 1124.203 Schwarz criterion -0.541762

Log likelihood -2293.658 F-statistic 111.0245

Durbin-Watson stat 1.743132 Prob(F-statistic) 0.000000

Из анализа t-статистик видно, что все коэффициенты, кроме коэффициентов при TEL, ROAD, FOREST, RIVER, значимы на 95%-доверительном уровне. Таким образом включение принадлежности к оценочным зонам является, но мнению автора, оправданным. Несмотря на то, что R2-adj относительно невысокий, его значение, тем неменее, выше чем в аддитивной и мультипликативной моделях. Данная модель была проанализирована по 11 направлениям, результаты оценивания приведены в приложении 4.

Для одних направлений коэффициенты при Z были значимы и, соответственно, принадлежность к оценочной зоне статистически значимо влияет на структуру модели, для других такое влияние не подтверждалось.

Следует заметить, что исключая незначимые переменные, мы получаем регрессии, где влияние оценочной зоны значимо, приведем в качестве примера Рижское направление:

ln(PRICE) = 6.8224989 + 0.3557595*EL - 0.32047292*GAS + 1.4597214*WC - 0.26571279*ROAD - 0.48865192*ln(MKAD) + 1.1649838*Z1 + 0.71930167*Z2 + 0.49471159*Z3 + 0.28423361*Z4 + 0.37282147*Z5

Результаты оценивания приведены в таблице 14.

Таблица 14


Оценивание мультипликативной модели МРА, учитывающей влияние фактора принадлежности к оценочной зоне, для участков Рижского направления после исключения незначимых переменных.

LS // Dependent Variable is ln(PRICE)

Sample(adjusted): 1 258

Variable Coefficient Std. Error t-Statistic Prob.

C 6.822499 0.745170 9.155622 0.0000

EL 0.355759 0.104513 3.403969 0.0008

GAS -0.320473 0.109094 -2.937584 0.0036

WC 1.459721 0.270179 5.402790 0.0000

ROAD -0.265713 0.096314 -2.758817 0.0062

ln(MKAD) -0.488652 0.155022 -3.152148 0.0018

Z1 1.164984 0.438079 2.659301 0.0083

Z2 0.719302 0.326001 2.206438 0.0283

Z3 0.494712 0.232404 2.128668 0.0343

Z4 0.284234 0.185829 1.529547 0.1274

Z5 0.372821 0.172728 2.158433 0.0319

R-squared 0.560038 Mean dependent var 5.586555

Adjusted R-squared 0.542226 S.D. dependent var 1.004311

S.E. of regression 0.679507 Akaike info criterion -0.731075

Sum squared resid 114.0472 Schwarz criterion -0.579593

Log likelihood -260.7774 F-statistic 31.44123

Durbin-Watson stat 1.799863 Prob(F-statistic) 0.000000

Таким образом включение принадлежности к оценочной зоне является, по мнению автора, закономерным. В заключении был проведен анализ прогностической силы модели.



Информация о работе «Моделирование формирования цен на земельные участки Московской области. Кадастровая оценка земель»
Раздел: Экономическая теория
Количество знаков с пробелами: 141577
Количество таблиц: 10
Количество изображений: 12

Похожие работы

Скачать
179103
2
33

... при этом рыночная стоимость как база оценки, на основе которой могут определяться производные от неб вилы стоимости. Государственная кадастровая оценка сельскохозяйственных угодий (Государственная кадастровая оценка земель в субъеетах РФ на уровне земельного участка и муниципальных образований) осуществляется для получения по каждому земельному участку сельскохозяйственных земель комплекса ...

Скачать
95187
2
8

... данного документа. Путем генерализации (укрупнения) поквартальной оценки может быть сформирована схема территориально-экономического зонирования города или региона, используемая для целей, отличных от налогообложения, в первую очередь – для целей принятия крупномасштабных решений городского или регионального развития. Оценочная стоимость единичного земельного участка населенного пункта — это ...

Скачать
112215
16
5

... функционально-пространственного развития города, сформулирован методически обоснованный подход и предложена 10 перспективная модель кадастровой оценки земель в городском секторе экономики, способствующая развитию предпринимательства в сфере управления земельными отношениями. Результаты, выносимые на защиту. В ходе проведенных исследований получены и выносятся на защиту следующие результаты: ...

Скачать
167040
3
9

... многих странах (в том числе развитых) применение компьютеров в управлении городскими территориями, ведении кадастра, анализе рыночных тенденций в рамках города весьма ограничено. В связи с этим выделим причины, по которым автоматизация решения типовых задач управления региональной недвижимостью Тульской области, как, впрочем, и других городов России, представляется весьма разумной: все материалы ...

0 комментариев


Наверх