Теория аберрации Стокса

Лекции по физике
Астрономические и земные измерения скорости света Теория Френеля частичного увлечения эфира движущимся телом и его теория аберрации. Опыты Араго и Физо Геометрическая оптика неоднородной прозрачной среды, пронизываемой движущимся через нее эфиром. Теорема Лоренца Теория абберации Стокса Механический принцип относительности. Инвариантность относительно преобразований Галилея Электродинамический принцип относительности Обсуждение понятия скорости тела и Кинематический вывод преобразований Лоренца Кинематический вывод преобразований Галилея Гипотеза эфира и гипотеза четырехмерного мира V/c Краткие исторические сведения Понятия абсолютного и относительного механического движения у Ньютона Неинерциальные системы отсчёта и силы инерции Астрономические и земные измерения скорости света Теория Френеля частичного увлечения эфира движущимся телом и его теория аберрации. Опыты Араго и Физо Геометрическая оптика неоднородной прозрачной среды, пронизываемой движущимся через нее эфиром. Теорема Лоренца Теория аберрации Стокса Механический принцип относительности Электродинамический принцип относительности Обсуждение понятия скорости тела и построения полей времени в покоящейся и движущейся системах отсчета Кинематический вывод преобразований Лоренца Кинематический вывод преобразований Галилея Гипотеза эфира и гипотеза четырехмерного мира V/c
285166
знаков
7
таблиц
67
изображений

4.7. Теория аберрации Стокса.

В 1845 г. Стокс опубликовал знаменитую работу “Об аберрации света”, в которой изложил свою теорию аберрации. В момент написания этой работы Стокс не знал еще работы Френеля 1818 г. по теории аберрации, о чем свидетельствует отсутствие ссылок на работу Френеля в его работе 1845 г. и его статья, появившаяся через несколько месяцев, уже в 1846 г., в которой Стокс подробно излагает по-своему теорию Френеля, называет ее “замечательной” и дает ей интересное дальнейшее развитие. Однако здесь же, в этой статье 1846г. Стокс отмечает, что теперь “мы столкнулись с любопытным случаем существования двух совершенно различных теорий, одинаково хорошо объясняющих явление”. И здесь же говорит о том, что не может проверить “без хорошего доказательства”, что эфир может свободно проходить через твердую массу Земли.

В работе 1845 г. Стокс пишет упоминает только об известном элементарном объяснении аберрации с помощью корпускулярной теории света, говорили о больших успехах волновой теории света, которая “просто и красиво объяснила многие сложные явления”, об отсутствии объяснения аберрации в рамках волновой теории.

Приступим к изложению содержания работы Стокса 1845 г. Однако несколько формализуем рассуждения Стокса, для лучшего понимания их сути.

Стокс предполагает, что Земля, двигаясь с постоянной скоростью в межпланетном пространстве переносит какую-то часть эфира с собой, вследствие того, что эфир вблизи её поверхности покоится относительно её поверхности, как бы “прилипает” к ней, причём скорость эфира нарастает при удалении от поверхности Земли, пока на не очень большом расстоянии, она не станет равной скорости эфира, покоящегося в межпланетном пространстве, относительно Земли. Таким образом, можно предположить, что в системе отсчёта, жёстко связанной с Землёй, эфир натекает на Землю стационарным сплошным потоком, обтекая её со всех сторон, с некоторым полем скоростей , не зависящим от времени t.

Предположим, что положение фронта световой волны, распространяющейся в стационарно движущемся эфире, в момент времени t, даётся уравнением вида составим дифференциальное уравнение, которое позволило бы определить последовательные положения фронта световой волны в различные моменты времени, т.е. определить эволюцию волнового фронта. Для этого надо найти функцию ¦.

Возмущение эфира, каковым является световая волна, в случае покоящегося эфира перемещается за интервал времени t, t+dt из точки x,y,z в точку с координатами где с — скорость света в покоящемся эфире и где  считаем, что возмущение распространяется по нормали к поверхности ¦=0, взятой в точке x,y,z. Возмущение в движущемся эфире, с заданным полем скоростей, по определению Стокса, за интервал времени t, t+dt из точки x,y,z перемещается в точку с координатами  т.е. Стокс считает, что распространяющееся в эфире возмущение просто сносится движением эфира. Таким образом, положение фронта в движущемся эфире в момент времени t+dt даётся уравнением . Разлагая последнее уравнение по малости dt, получаем искомое уравнение, описывающее эволюцию волнового фронта оптической волны, распространяющейся в движущемся эфире:  или ;

Хотя этого рассуждения Стокс и не приводит, но оно неявно содержится в его рассуждениях. Знак ± соответствует неопределённости направления нормали, задаваемой вектором с компонентами

Будем теперь считать, что скорость эфира, т.е. величины u, u, w малы по сравнению со скоростью света с и построим частное приближённое решение дифференциального уравнения, которое Стокс фактически и рассматривает в своей работе 1845 г. по теории аберрации.

Нулевое приближение. Положим u = u = w = 0  в приведённом уравнении для ¦, т.е. рассмотрим покоящийся эфир. Тогда легко убедиться, что уравнение нулевого приближения имеет следующее частное решение: , это решение описывает оптическую плоскую волну, распространяющуюся в отрицательном направлении оси z. Действительно, уравнение нулевого приближения имеет вид здесь мы взяли знак минус перед корнем, причём для приведенной нулевой функции справедливы соотношения:  перед корнем мы берём знак “-”.

Первое приближение. Считая теперь скорости u, u, w малыми величинами, первого порядка малости, найдём приближённое решение приведённого полного уравнения, со знаком “-” перед корнем, переходящее при пренебрежении величинами u, u, w в решение ¦0 , в виде функции  где  является малой величиной первого порядка малости по u, u, w . Следуя Стоксу, считаем, что поправочная функция z зависит только от координат x, y и не зависит от координаты z. Это предположение, разумеется, несколько ограничивает произвол отыскиваемого решения. Но если нам удастся его построить, то всё в порядке. Из полного уравнения, которому удовлетворяет функция ¦, со знаком “-” перед корнем, имеем следующее приближённое уравнение для определение функции z :  из которого непосредственно получаем приближённое уравнение  для определения функции z. Интегрируя полученное уравнение по t, приходим к соотношению

Таким образом, окончательно приходим к следующему приближённому уравнению для определения положения фронта рассматриваемой волны в момент времени t:

Составим выражения для компонент ненормированной нормали к этой поверхности волнового фронта в точке x,y,z = - ct в момент времени t. Имеем

Обозначим через  направляющие косинусы для нормали, взятой к найденной приближённо волновой поверхности. Так как величина w /c мала, то углы  так что приближённо можно положить .

В этом месте своих рассуждений Стокс прибегает к гипотезе о потенциальности поля скоростей эфира.

Гипотеза Стокса. Поле скоростей эфира потенциально, т.е. существует такая функция j(x,y,z), что

Согласно гипотезе Стокса имеем следующие очевидные простые соотношения для компонент поля скоростей:  используя которые, выведенные приближённые формулы для углов a и b можно записать в виде

Следовательно для изменения углов a и b от момента времени t=t1 до момента времени t=t2 имеем следующие очень простые формулы:

Из этих формул нетрудно получить общеизвестный закон аберрации. Пусть свет от звезды идёт по направлению, строго перпендикулярному направлению движения Земли. Первый момент времени t=t1 возьмём таким, чтобы фронт световой волны находился на столь большом удалении от Земли, чтобы для скорости эфира в точках этого фронта можно было считать, что  предполагаем, что Земля движется в положительном направлении оси x с постоянной скоростью u . Второй момент времени t=t2 возьмём в тот самый момент, когда волновой фронт дошёл до Земли, тогда  

Следовательно, фронт, идущий от звезды плоской волны, поворачивается по приближению к Земле таким образом, что угол, составленной его нормалью с осью х, станет равным  где u — скорость движения Земли, с — скорость света в покоящемся эфире. См. рис.

Наблюдателю на Земле будет казаться, что звезда сместилась на небе в сторону направления движения Земли на угол аберрации равный .

В 1880 г. Стокс опубликовал важное дополнение к изложенной нами сейчас работе 1845 г. Он обратил внимание на то, что в работе 1845 г. он проследил лишь за изменениями направления нормали к фронту волны, по мере распространения волны от звезды до Земли. Когда эфир покоится, траектории волновых нормалей совпадают с траекториями лучей. Когда эфир движется, с заданным полем скоростей, траектории волновых нормалей и траектории лучей перестают совпадать.

Обозначим через n — единичный вектор нормали в некоторой точке фронта волны в момент времени t и через s — единичный вектор направления луча в этой точке волнового фронта, рассматриваемого в момент времени t . Пусть a, b — углы вектора нормали n с осями x, y, причём все эти углы мало отличаются от прямых

Стокс считает, что  где v(u,u,w) — поле скоростей эфира в рассматриваемой точке волнового фронта в момент времени t. Следовательно:  или  окончательно  Приращение этих углов за интервал времени t, t+dt, когда dz= - cdt, таким образом равно

Выше мы показали, что

так что окончательно

Принимая гипотезу Стокса о потенциальности поля скоростей эфира, таким образом, заключаем, что правые части приведенных равенств равны нулю.

Итак, изменение направления луча по мере распространения равно нулю; лучи света в увлекаемом Землей эфире - приближенно прямолинейные.


Информация о работе «Лекции по физике»
Раздел: Физика
Количество знаков с пробелами: 285166
Количество таблиц: 7
Количество изображений: 67

Похожие работы

Скачать
27693
7
32

... свойства. А.у.т. - тело, для которого силы однозначно определяют деформации и наоборот. Правильность выбранной абстракции подтверждается совпадением, определенной точностью результатов теории и опыта. Физика - наука, устанавливающая закономерные связи посредством наблюдений явлений в природе и посредством лабораторных опытов. Согласие результатов научного анализа с результатами опыта - критерий ...

Скачать
25258
0
3

... так, как большинство материалов относится к устному творчеству, откуда и были получены, также есть выдержки из книг: «Физики шутят», «Физики продолжают шутить», «Сборник задач по физике» Г. Остера. Шутки, которые шутят физики. Один математик спросил коллегу, известного своими религиозными убеждениями: - Вы, что же, верите в единого ...

Скачать
27836
0
0

... фара́да). 1 фарад равен электрической ёмкости конденсатора, при которой заряд 1 кулон создаёт между обкладками конденсатора напряжение 1 вольт. Ф = Кл/В = A·c/B Единица названа в честь английского физика Майкла Фарадея Фарад — очень большая ёмкость. Емкостью 1Ф обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца. Для сравнения, ёмкость Земли (шара размером с ...

Скачать
23944
0
0

... гальванометра отклонялась (то же происходило и при поднятии электромагнита из катушки). Эта схема напоминает рисунок из лабораторного журнала Фарадея. Удивительно, как схожи оказались эксперименты двух великих физиков, работавших независимо друг от друга на разных континентах! В своей статье, написанной уже после знакомства с опытом Фарадея, Генри, отдавая должное английскому физику, подчеркнул, ...

0 комментариев


Наверх