4.9. Электродинамический принцип относительности.
Инвариантность относительно преобразований Лоренца.
Оказывается, одномерное волновое уравнение все же остается инвариантным при переходе от системы отсчета K к системе отсчёта К’, но если воспользоваться не преобразованиями Галилея, а так называемыми преобразованиями Лоренца, которые имеют вид:
Теперь не только координата Х, но и время Т преобразуются. Докажем инвариантность. Снова рассмотрим функцию
где b=V/C. Тогда , дифференцируя её по t , получим
Следовательно ,
Далее, дифференцируя по t, получаем
Следовательно,
Подставим полученные выражения для вторых производных в исходное волновое уравнение Даламбера
Получим тогда уравнение
Таким образом, приходим к уравнению
слагаемые со смешанным вторым производным в обеих частях равенства сокращаются. Окончательно получаем уравнение
Следовательно, приходим к уравнению
т.е. в точности к исходному одномерному волновому уравнению Даламбера.
Итак, приходим к заключению, что волновое уравнение Даламбера инвариантно относительно преобразований Лоренца. Это важное математическое открытие в своё время сделал Лоренц, который, однако, рассматривал не просто одномерное волновое уравнение, а уравнения Максвелла, которые можно считать усложненным трехмерным “волновым уравнением” - для поперечных электромагнитных волн. Именно это математическое открытие позволило Лоренцу в 1904 г. Объяснить отрицательный результат экспериментов первого и второго порядков по V/C по обнаружению скорости V поступательного движения относительно эфира.
Отметим здесь ещё одну интересную возможную физическую интерпретацию полученного математического результата - с инвариантностью волнового уравнения относительно преобразований Лоренца.
Для большей определённости снова рассмотрим звуковые волны в воздухе в акустическом приближении . Эти волны можно рассматривать как самостоятельные физические объекты , никак не связанные со средой - воздухом, колебаниями которого они на самом деле являются . Среда теперь - совершенно другой физический объект, даже иной физической природы. Звуковые волны существуют сами по себе ,безо всякой среды. И этот новый физический объект -“волны“ - поэтому совершенно естественно должен одинаково описываться во всех инерциальных системах отсчета, так как инерциальные системы отсчета не только механически, но и физически должны быть полностью равноправными.
В отношении звуковых волн в воздухе такая физическая интерпретация вполне возможна, но только о рамках акустического приближения, т.е. для волн очень малой (даже бесконечно малой) амплитуды. В случае звуковых волн конечной и большой амплитуды такая, казалось бы, самая простая и естественная интерпретация, разумеется, неправильна.
В специальной теории относительности обсуждаются не звуковые, а электромагнитные волны. Средой, подобной воздуху, для звуковых волн здесь является, правда, пока ещё экспериментально не открытая особая гипотетическая среда, называемая эфиром. Но эфир экспериментально не обнаружен , и вообще в настоящее время в современной фундаментальной физике электромагнитного поля ещё многое остаётся неясным. Поэтому можно считать, как это делают в настоящее время, описанную физическую интерпретацию единственно приемлемой, как это провозгласил Эйнштейн в 1905 г., что эфира в природе не существует.
Как выше отмечалось, оптические и электродинамические эксперименты, проведённые на Земле с целью обнаружения и измерения поступательной скорости V Земли первого и второго порядков малости по величине V/C=10^-4, дали отрицательный результат. В частности, отрицательный результат дал и эксперимент Майкельсона - Морли с двухплечевым интерферометром. Никаких эффектов влияния поступательной скорости движения Земли все эти эксперименты не выявили .Скорость Земли в указанных экспериментах измерить не удалось.
Таким образом, к концу Х|Х века в результате всех этих экспериментальных неудач удалось обобщить механический принцип относительности Галилея на электромагнитные (в том числе и оптические) явления и провозгласить общефизический принцип относительности, который иногда называют принципом относительности Эйнштейна.
Электродинамический принцип относительности.
Все физические явления во всех инерциальных системах отсчета протекают одинаково. Нельзя с помощью каких-либо физических экспериментов в движущейся инерциальной системе отсчета определить скорость ее движения , если не производить наблюдений тел из системы отсчета , относительно которой мы хотим определить скорость движения.
Математическое свойство инвариантности относительно преобразований Лоренца основных уравнений электродинамики - уравнений Максвелла использовалось Лоренцем в 1895 г. И в 1904 г. Для объяснения, почему с помощью электродинамических экспериментов нельзя определить скорость поступательного движения Земли в эффектах первого и второго порядков малости ( 1895 г.) и вообще во всех эффектах (1904 г. ).
... свойства. А.у.т. - тело, для которого силы однозначно определяют деформации и наоборот. Правильность выбранной абстракции подтверждается совпадением, определенной точностью результатов теории и опыта. Физика - наука, устанавливающая закономерные связи посредством наблюдений явлений в природе и посредством лабораторных опытов. Согласие результатов научного анализа с результатами опыта - критерий ...
... так, как большинство материалов относится к устному творчеству, откуда и были получены, также есть выдержки из книг: «Физики шутят», «Физики продолжают шутить», «Сборник задач по физике» Г. Остера. Шутки, которые шутят физики. Один математик спросил коллегу, известного своими религиозными убеждениями: - Вы, что же, верите в единого ...
... фара́да). 1 фарад равен электрической ёмкости конденсатора, при которой заряд 1 кулон создаёт между обкладками конденсатора напряжение 1 вольт. Ф = Кл/В = A·c/B Единица названа в честь английского физика Майкла Фарадея Фарад — очень большая ёмкость. Емкостью 1Ф обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца. Для сравнения, ёмкость Земли (шара размером с ...
... гальванометра отклонялась (то же происходило и при поднятии электромагнита из катушки). Эта схема напоминает рисунок из лабораторного журнала Фарадея. Удивительно, как схожи оказались эксперименты двух великих физиков, работавших независимо друг от друга на разных континентах! В своей статье, написанной уже после знакомства с опытом Фарадея, Генри, отдавая должное английскому физику, подчеркнул, ...
0 комментариев