Карпова Ирина Викторовна, старший преподаватель кафедры алгебры ХГПУ
1. Алгебраическим выражением называется выражение, составленное из конечного числа букв и чисел, соединенных знаками действий сложения, вычитания, умножения, деления, возведения в целую степень и извлечение корня.
Буквы, входящие в А.В могут принимать значения из некоторого числового множества, которое называется множеством допустимых значений или областью определения А.В.
Так, в рассмотренных выше примерах 1) и 2) значениями букв, входящих в А.В могут быть любые числа. В общем случае область определения (О.О.) целых алгебраических выражений может быть любым числовым множеством.
Так как делить на выражение равное нулю нельзя, то с и b в пр.3) могут принимать любые числовые значения, кроме с=0 и b=0, таким образом О.О. А.В из пр.3) с¹0, b¹0. На этом же основании О.О. А.В из пр.4) x+y¹0 или х¹y.
В общем случае О.О. дробно-рационального А.В не включает те значения, входящих в выражение букв, при которых знаменатель дробей в выражении обращается в нуль.
Область определения А.В из пр.5) а¹b, b¹0 и а>0 т.к. выражение стоящее под знаком корня четной степени должно быть, по определению арифметического корня, неотрицательным.
О.О. А.В из пр.6) х+1³0 или х³-1.
В общем случае О.О. иррационального выражения включает только те значения букв, при которых выражения, стоящие под знаком корня четной степени принимают неотрицательные значения.
Тождеством называется равенство двух А.В справедливое для любых допустимых значений, входящих в него букв.
Равенство (a+b)2=a2+2ab+b2 справедливое для любых a и b есть тождество.
Равенство является тождеством только для а¹1.
Тождественным преобразованием А.В называется замена одного А.В другим тождественно ему равным, но отличным по форме.
a3+3a2b=a2(a+3b)
при с¹0.
Целью тождественных преобразований (Т.П) может быть приведение выражению вида, более удобного для численных расчетов или дальнейших преобразований.
К Т.П относятся:
приведение подобных членов
раскрытие скобок
разложение на множители
приведение алгебраических дробей к общему знаменателю
избавление от иррациональности в знаменателе и т.п.
2. Рассмотрим тождественные преобразования А.В.
Для успешного осуществления Т.П. целых А.В нужно помнить:
Формулы сокращенного умножения
(a ± b)2 = a2 + 2ab + b2
a3 ± b3 = (a ± b)( a2ab+b2)
(a ± b)3 = a3 ± 3a2b + 3ab2 ± b3
a2 – b2 = (a + b)(a – b)
Свойства степени с целыми показателями
Формулы корней квадратного трехчлена ax2 + bx + c
Теорему Виета х1 и х2 — корни ax2 + bx + c в том и только том случае, если
Разложение квадратного трехчлена ax2 + bx + c на множители.
Если х1, х2 — корни трехчлена, то ax2 + bx + c = а(х–х1)(х–х2)
Рассмотрим несколько примеров тождественных преобразований целых А.В.
Пример 1. Разложить многочлен на множители
Решение:
Задача заключается в том, чтобы сгруппировать слагаемые так, чтобы они имели общий множитель, который можно будет затем вынести за скобки, прейдя от суммы к произведению.
Итак.
Объединим крайние слагаемые в одну группу, а средние в другую:
2) Вынесем за скобки во второй группе общий множитель 2ab, получим:
3) Вынесем за скобки общий множитель первого и второго слагаемого (a2 + b2):
Полученное выражение есть произведение двух сомножителей, а значит многочлен f(a,b) разложили на множители.
Ответ:
Пример 2. Разложить на множители f(a)= a3 – 7а2 + 7а +15
Решение:
Как бы мы не группировали слагаемые мы не получим группы слагаемых, имеющие одинаковые множители. Поэтому, сначала преобразуем сами слагаемые.
–7а2 = –3а2 – 4а2
7а = 12а – 5а
f (a) = a3 – 7а2 + 7а +15 = a3 – 3а2 – 4а2 + 12а – 5а +15
3) Сгруппируем слагаемые попарно, и из каждой скобки вынесем общий множитель.
f(a) = (a3 – 3а2) +( – 4а2 +12а) + (– 5а +15) = а2 (а – 3) – 4а (а – 3) – 5(а – 3)
4) В полученном выражении все слагаемые имеют общий множитель (а – 3), который и выносим за скобки. f(a) = (а – 3)(а2 – 4а – 5)
5) Мы получили разложение на множители f(a), но второй множитель в свою очередь может быть разложен на множители. Для этого, используя теорему Виета, разложим трехчлен (а2 – 4а – 5) на множители.
По теореме Виета корнями трехчлена (а2 – 4а – 5) являются а1=5 и а2= –1. Тогда имеем (а2 – 4а – 5) = (а – 5)(а + 1) и f(a) = (а – 3)(а – 5)(а + 1)
Ответ: a3 – 7а2 + 7а +15 = (а – 3)(а – 5)(а + 1).
Пример 3. Разложить на множители f(a,b,c) = ab(a+b) – bc(b+c) + ac(a – c).
Решение:
1) Заметим, что выражение, стоящее в первых скобках есть сумма выражений, стоящих во второй и в третьей скобках a+b=(b+c)+(a–c). Подставим это вместо а+b.
f(a,b,c)=ab((b+c)+(a–c))–bc(b+c)+ac(a–c)=ab(b+c) + ab(a–c)–bc(b+c)+ac(a–c)
2) Сгруппируем 1-е и 3-е слагаемые и 2-е и 4-е и вынесем общие множители за скобки.
f(a,b,c)=(b+c)(ab–bc)+(a–c)(ab–ac)=(b+c)(a–c)b+(a–c)(b+c)a=(a–c)(b+c)(b+a)
Полученное есть произведение трех сомножителей.
Ответ: ab(a+b) – bc(b+c) + ac(a – c)=(a–c)(b+c)(b+a).
Пример 4. Разложить на множители f(a,b)=4a2–12ab+5b2.
Решение:
1) Выделим полный квадрат
f(a,b)=(2a)2–2(2a)(3b)+(3b)2 –4b2 =(2a–3b)2 –4b2.
2) Воспользуемся формулой разности квадратов:
f(a,b)=((2a–3b)–2b)((2a–3b)+2b)=(2a–5b)(2a–b).
Ответ: 4a2–12ab+5b2=(2a–5b)(2a–b).
Пример 5. Разложить на множители f(a)=а3+9а2+27а+19.
Решение:
Так как выражение зависит только от а, которое входит в выражение в 3-ей, 2-ой и 1-ой степенях, попытаемся выделить полный куб, воспользуясь формулой (a+b)3=a3+3a2b+3ab2+b3.
1) f(a)=a3+3a2 ×3+3a×32+33 –8
2) т.к. 8=23, то воспользуемся формулой разности кубов: a3 –b3=(a–b)(a2+ab+b2).
f(a)=(a+3)3–23=(a+3–2)((a+3)2+2(a+3)+22)=(a+1)(a2+8a+19).
Ответ: а3+9а2+27а+19=(a+1)(a2+8a+19).
... функций, имеющих одинаковое основание, симметричны относительно прямой (рис. 3). Рис. 3 Глава 3. Тождественные преобразования показательных и логарифмических выражений на практике. Задание 1. Вычислите: 1.1) ; 1.2) ; 1.3) ; 1.4) ; 1.5) . Решение: 1.1) ; 1.2) ; 1.3) ; 1.4) ; 1.5) . Ответ: ; ; ; ; . Задание 2. Упростите выражения: 2.1) ; ...
... сформулированной гипотезы необходимо было решить следующие задачи: 1. Выявить роль тригонометрических уравнений и неравенств при обучении математике; 2. Разработать методику формирования умений решать тригонометрические уравнения и неравенства, направленную на развитие тригонометрических представлений; 3. Экспериментально проверить эффективность разработанной методики. Для решения ...
... и приемлемым для выполнения следующего действия, где это значение используется (т.е. некоторые величины в выражении будут случайными, другие — вычисляемыми); 3) при записи десятичной дроби в школьной математике используется десятичная запятая, а при записи на компьютере — десятичная точка; 4) если в записи выражения используются десятичные дроби, то они должны быть несократимыми и правильными. ...
... образом, обращение с числовым рядом как с величиной позволяет по новому формировать сами навыки сложения-вычитания (а затем умножения-деления). Глава II. Методические рекомендации к изучению алгебраического материала в начальной школе 2.1 Обучение в начальной школе с точки зрения потребностей средней школы Как известно, при изучении математики в 5-м классе существенная часть времени ...
0 комментариев