5.1.2 Резиновые амортизаторы
Резиновые амортизаторы установлены в первой ступени рессорного подвешивания в каждом упругом комплекте буксы, последовательно двум концентрически расположенным пружинам.
Рис 9. Расчетная схема резинового амортизатора
Нагрузка, воспринимаемая резиновым амортизатором:
Исходя из известных значений параметров пружин и соображений компоновки, принимаем .
Высота амортизатора в свободном состоянии с учетом величины допустимой деформации сжатия:
.
Твердость резины в единицах ТИР:
Так как амортизатор работает в условиях воздействия воздуха и влаги, то согласно справочным данным, выбираем резину марки 7-2959.
Жесткость резинового амортизатора:
Раздел 6.
КОМПОНОВКА ОБОРУДОВАНИЯ И ВЫПОЛНЕНИЕ УПРОЩЁННОЙ РАЗВЕСКИ ТЕПЛОВОЗА
Размещение оборудования на локомотиве подчинено ряду требований, главным из которых можно считать минимизация длины экипажной части, малогабаритность и компактность сборочных единиц; удобство монтажа оборудования и доступность его обслуживания; равномерность распределения нагрузки на рельсы.
При продольной развеске принимается, что все элементы оборудования локомотива располагаются строго по его продольной оси симметрии. При таком допущении локомотив рассматривается как плоская система нагруженная вертикальными силами. Тогда, координата центра тяжести надтележечного строения рассчитывается в виде:
где: - вес узла или детали, кН;
- расстояние от центра тяжести узла или детали до условной оси, в качестве которой выбирают ось, проходящую по передней автосцепке, м.
Таблица 8.
Упрощенная весовая ведомость секции тепловоза
Оборудование | Вес, кН | Плечо, м | Момент, кН·м |
Дизель | 180 | 9,9 | 1782 |
Тяговый генератор | 90 | 7,6 | 684 |
Силовые механизмы | 2,3 | 13,2 | 30,36 |
2х машинный агрегат | 6,6 | 6,6 | 43,56 |
компрессор | 6,5 | 14,25 | 92,625 |
установка ЦВС | 10 | 5,25 | 52,5 |
высоковольтная камера | 19,56 | 3 | 58,68 |
Кабина машиниста (П) | 19,56 | 1,43 | 27,9708 |
Главная рама | 129 | 9,9 | 1277,1 |
Топливный бак +2/3 топлива | 45,76 | 9,9 | 453,024 |
Холодильная камера (с вент.) | 70,28 | 15,8 | 1110,424 |
Кабина машиниста (З) | 19,56 | 18,13 | 354,6228 |
Акк. Батарея | 19,2 | 9,9 | 190,08 |
Блок ЭДТ | 1,9 | 3,95 | 7,505 |
Всего: | |||
626,82 | 6164,4516 | ||
Находим координату центра тяжести:
%
Отклонение не превышает 3%, следовательно, задачу развески оборудования можно считать решенной.
Для обеспечения равенства нагрузок от кузова между всеми колесными парами локомотива расположим точки его опирания на тележки на одинаковом расстоянии от центра тяжести надтележечного строения (lо=5,15м):
Lт1 = lцт - lо = 9,80 – 5,15 = 4,65 м;
Lт2 = lцт + lо = 9,80 + 5,15 = 14,95 м;
Раздел 7.
ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ИСПОЛЬЗОВАНИЯ СЦЕПНОГО ВЕСА ТЕПЛОВОЗА
Схема экипажа с двумя 2–осными тележками, двухступенчатым рессорным подвешиванием и наклонными тягами для передачи силы тяги с тележек на кузов. Подвешивание тяговых электродвигателей опорно-осевое. Две тяги в каждой точке располагаются таким образом, чтобы линии их действия между рамой кузова и тележкой пересекали поверхность катания колёс на уровне головки рельсов в середине тележки. Тем самым достигается такой же эффект, как если бы точка пересечения тягового усилия была расположена на уровне головки рельса. Благодаря этому не возникает перераспределения нагрузок между отдельными колёсными парами тележек, а образуется лишь сравнительно небольшая разница в нагрузках обеих тележек, вызванная перераспределением нагрузок от опор кузова на тележки.
Если обозначить и высоту расположения точек А и В над головкой рельса, то суммарная продольная сила от 2х колёсных пар одной тележки передаётся на тележку на высоте букс, равной . Эта сила вызывает в наклонной подвеске на высоте силу . Горизонтальная составляющая этой силы:
где - угол наклона тяг
Одновременно в точке А действует вертикальная составляющая этой силы -
Момент , создаваемый работающими тяговыми электродвигателями вызывает перераспределение нагрузок между осями колёсных пар величиной в . В противовес этому моменту действует момент от силы относительно средней поперечной оси тележки, расположенной на высоте букс колёсных пар.
где - расстояние точки А (прикрепление тяги к тележке) до её середины.
Учитывая, что и , получаем:
Таким образом, при выбранном направлении продольных сил тяг момент их сил полностью компенсирует момент сил, вызванных передачей силы тяги на тележку на высоте букс колёсных пар.
На раму кузова от каждой тележки передаётся усилие . Суммарная горизонтальная составляющая этих сил уравновешивается сопротивлением движению поезда , а вертикальные составляющие действуют относительно тележки на плече . Сила , воспринимаемая тягой передней по ходу движения тележки, приложена к кузову в точке на расстоянии , а у задней в точке на расстоянии до середины кузова образуется момент:
где - база локомотива
Этот момент вызывает разгрузку передней по ходу движения локомотива тележки и такую догрузку задней на величину:
Таким образом, у передней тележки обе колёсные пары разгружаются в зависимости от величины силы тяги и соотношения , в зависимости от величины угла наклона продольных тяг, но при непременном условии, что их направления пересекаются посредине тележки на уровне головки рельсов.
Величина разгрузки колёсных пар передней тележки:
Аналогично, перегрузы 3ей и 4ой оси:
Коэффициент использования сцепного веса:
Раздел 8.
ГЕОМЕТРИЧЕСКОЕ ВПИСЫВАНИЕ ЭКИПАЖА В КРИВУЮ
При исследовании движения локомотива в кривых приходится решать ряд чисто геометрических задач. Прежде всего необходимо определить, вписывается ли экипаж проектируемого тепловоза в кривую заданного радиуса.
Для решения указанной задачи необходимо прежде всего рассмотреть геометрические соотношения между размерами рельсовой колеи и локомотивного экипажа. Правила технической эксплуатации устанавливают, что при укладке рельсов в кривых, радиус которых меньше 350 м, уширение колеи δ составляет 10 мм, а при радиусе менее 300 м – δ=15 мм.
Для упрощения чертежа на нем изображаются лишь внутренние грани головок рельсов. Расстояние между ними принимается равным суммарному зазору между гребнями бандажей и головками рельсов в кривой, радиус которой менее 300 м, т.е. 29 мм. Соответственно и экипаж локомотива изображается в виде одной линии. Точки на этой линии изображают оси колесных пар, а расстояния от этих точек до кривых, представляют собой зазоры между гребнями колесных пар и головками рельсов. Поэтому крайние колесные пары трехосной тележки прижаты к головкам рельсов, а внутренняя колесная пара имеет относительно них зазор. Для того, чтобы этот зазор можно было измерить непосредственно в мм, при вычерчивании база тележки уменьшается в n раз, а радиус кривой в n2 раз.
Точные значения могут быть получены, если выбрать разные, не связанные друг с другом масштабы my и mx. При этом окружность, изображающая рельс, преобразуется в эллипс, который на участке, необходимом для вписывания локомотива, с большой точностью может быть заменен параболой.
Уравнение параболы, изображающей на чертеже наружный рельс:
.
При построении принимаем масштабы my=1:1, mx=1:100.
Заданный радиус кривой: , получаем:
Подставляя в это выражение величину Х, получим координаты параболы. Если эту параболу сдвинуть параллельно самой себе на 29мм, получим изображение внутреннего рельса. Координаты парабол наружного и внутреннего рельсов представлены в табл.8.
Таблица 8.
Значения координат парабол внутреннего и наружного рельсов
х, мм | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
yн, мм | 0 | 4 | 16 | 36 | 64 | 100 | 144 | 196 | 256 |
yв, мм | 29 | 33 | 45 | 65 | 93 | 129 | 173 | 225 | 285 |
Результат построений показывает, что проектируемый локомотив почти вписывается в кривую R = 125 м . Для его вписывания можно сместить рельс на 2 мм, но в принципе можно сказать, что он вписывается в кривую заданного радиуса, и тележки повернуты относительно рамы тепловоза на угол:
– передняя тележка
– задняя тележка
Раздел 9.
СРАВНЕНИЕ ПРОЕКТИРУЕМОГО ТЕПЛОВОЗА С ТЕПЛОВОЗОМ, ИСПОЛЬЗУЕМЫМ В КАЧЕСТВЕ ПРОТОТИПА
За прототип в данном курсовом проекте был выбран серийный пассажирский тепловоз ТЭП60 с Ne=2206 кВт.
Сравнение тяговых и удельных характеристик:
где – расчетный коэффициент сцепления колес локомотива с рельсами.
,
где – коэффициент сцепления колес локомотива с рельсами в соответствии с ПТР;
– коэффициент, учитывающий новые технические решения, увеличивающие тяговые свойства локомотива.
Таблица 9.
Тяговая характеристика проектируемого локомотива
V, км/ч | 0 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
Fk, кН | 384,8 | 348,9 | 322,6 | 286,5 | 209,4 | 157,1 | 125,6 | 104,7 | 89,7 |
V, км/ч | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 |
Fk, кН | 78,5 | 69,8 | 62,8 | 57,1 | 52,4 | 48,3 | 44,9 | 41,9 | 39,3 |
Для сравнения полученной тяговой характеристики проектируемого локомотива с тяговой характеристикой тепловоза, принятого в качестве прототипа, переходим к рассмотрению относительных тяговых характеристик:
В этих выражениях и определяются при конструкционной скорости движения проектируемого и серийного локомотивов и использовании эффективной мощности первичного двигателя:
.
,,,
,
.
Таблица 10
Тяговая характеристика тепловоза-прототипа
V, км/ч | 0 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
Fk, кН | 205 | 205 | 205 | 205 | 187 | 147 | 130 | 104 | 87 |
V, км/ч | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 |
Fk, кН | 78 | 70 | 63 | 60 | 53 | 48 | 44 | 40 | 37 |
Рис 11. Сравнение тяговых удельных характеристик серийного и проектируемого тепловоза
Таблица 11
Относительные тяговые характеристики проектируемого и серийного тепловозов
F проек | 7,77 | 7,04 | 6,51 | 5,78 | 4,22 | 3,17 | 2,54 | 2.11 | 1,81 | 1,59 | 1,41 | 1,27 | 1,15 | 1,06 | 0,98 | 0,91 | 0,85 | 0,79 |
F сер | 4,13 | 4,13 | 4,13 | 4,13 | 3,77 | 2,96 | 2,62 | 2,10 | 1,75 | 1,57 | 1,41 | 1,27 | 1,21 | 1,07 | 0,97 | 0,89 | 0,81 | 0,75 |
V пр | 0 | 0,03125 | 0,0625 | 0,125 | 0,1875 | 0,25 | 0,3125 | 0,375 | 0,4375 | 0,5 | 0,5625 | 0,625 | 0,6875 | 0,75 | 0,8125 | 0,875 | 0,9375 | 1 |
V сер | 0 | 0,03125 | 0,0625 | 0,125 | 0,1875 | 0,25 | 0,3125 | 0,375 | 0,4375 | 0,5 | 0,5625 | 0,625 | 0,6875 | 0,75 | 0,8125 | 0,875 | 0,9375 | 1 |
Рис 12. Сравнение относительных тяговых характеристик серийного и проектируемого тепловоза
Синим цветом показана тяговая характеристика проектируемого тепловоза, а сиреневым – тепловоза прототипа.
Анализ удельных тяговых характеристик проектируемого и взятого за прототип тепловозов показал, что у серийного тепловоза участок ограничения по сцеплению лежит ниже, чем у проектируемого, сила тяги несколько больше вследствие того, что проектируемый локомотив имеет ряд конструктивных решений, которые позволяют увеличить силу сцепления колеса с рельсом, а значит и увеличить силу тяги.
ЗАКЛЮЧЕНИЕ
В курсовой работе произведено проектирование пассажирского тепловоза мощностью 2200 кВт в секции. Спроектированный тепловоз отвечает техническим требованиям, предъявляемым к нему министерством транспорта, имеет ряд новых технических решений, которые позволили повысить тяговые свойства локомотива, его КПД, улучшить условия взаимодействия колесных пар и пути, сократить затраты мощности на собственные нужды, повысить надежность конструкций локомотива:
· передача переменно-постоянного тока;
· электропривод вентилятора охлаждающего устройства;
· электропривод компрессора;
ЛИТЕРАТУРА
1. Тепловозы маневровые. Технические требования. М. 2002.
2. Конструкция и динамика тепловозов. Изд. 2-е, доп., под ред Иванова В. Н. М.: Транспорт, 1974. – 336 с.
3. Выбор основных параметров, расчет и конструирование тепловозов: Методические указания. Часть 1 – М.: МИИТ, 2003. – 64 с.
4. Выбор основных параметров, расчет и конструирование тепловозов: Методические указания. Часть 2 – М.: МИИТ, 2003. – 47 с.
... действия компрессора (принимается равным 0,75 - 0.81); к - показатель адиабаты сжатия (к = 1,4). 2.1.3. Расчет параметров рабочего тела на входе в цилиндры Температура воздуха на выходе из компрессора: , К (14) Если в выбранной схеме предусмотрен охладитель, то температура после охладителя на входе в дизель определяется соотношением: , К (15) где hх - коэффициент эффективности ...
... .ч Достигнутые значения gе для тепловозных дизелей: 4-х тактные–0,2 - 0,225 кг/кВт.ч, Литровая мощность двигателя: , кВт/л (57) Nл=8871/(0,20096*8*1000)=5,5 кВт/л. Для тепловозных дизелей соответственно: 4-х тактные NЛ15, После окончания расчета рабочего процесса и технико-экономических показателей все основные результаты следует свести в таблицу 4. Таблица 4. Результаты расчетов. ...
... ребрами) изображают конструктивные и потоковые функциональные структуры [14]. Принципы построения функциональных структур технических объектов рассматриваются в последующих главах курса "Основы проектирования им конструирования" не включенных в настоящее пособие. Для систем управления существуют характеристики, которые можно использовать в качестве критериев для оценки структур. Одна из них - ...
... обобщающим показателем, определяющим эффективность внедрения новой техники, является экономический эффект, в котором находят отражение все показатели, характеризующие новую разработку [16]. Годовой экономический эффект от оборудования для дозировки балласта: , (4.1) где - годовая выручка от использования устройства, руб; - годовые затраты на эксплуатацию устройства, руб. Годовая выручка ...
0 комментариев