ВЛИЯНИЕ ОТЖИГА НА СПЕКТРЫ И КИНЕТИКУ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕНЦИИ

Влияние температуры на концентрацию триплетных молекул в твердых растворах при сенсибилизированном возбуждении
МЕЖМОЛЕКУЛЯРНЫЙ ПЕРЕНОС ЭНЕРГИИ ТРИПЛЕТНОГО ВОЗБУЖДЕНИЯ В ТВЁРДЫХ РАСТВОРАХ МЕХАНИЗМЫ КОНЦЕНТРАЦИОННОГО ТУШЕНИЯ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ В РАСТВОРАХ ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА МЕЖМОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ ПРИМЕСНЫХ ОРГАНИЧЕСКИХ МОЛЕКУЛ В РАСТВОРАХ РАСТВОРИТЕЛИ И СОЕДИНЕНИЯ МЕТОДИКА ЭКСПЕРИМЕНТА ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ТРИПЛЕТНОГО СОСТОЯНИЯ МОЛЕКУЛ АКЦЕПТОРА ИЗ КИНЕТИКИ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕЦИИ ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ИНТЕНСИВНОСТИ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕНЦИИ ОРГАНИЧЕСКИХ МОЛЕКУЛ ВЛИЯНИЕ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ И РАСТВОРИТЕЛЯ НА ПАРАМЕТРЫ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕНЦИИ НЕОБРАТИМЫЙ ХАРАКТЕР ХОДА КРИВОЙ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ КОНЦЕНТРАЦИИ ТРИПЛЕТНЫХ МОЛЕКУЛ АКЦЕПТОРА ВЛИЯНИЕ СКОРОСТИ ЗАМОРАЖИВАНИЯ НА ПАРАМЕТРЫ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕНЦИИ ОСНОВНЫЕ РЕЗУЛЬТАТЫ ГЛАВЫ 3 ВЛИЯНИЕ ОТЖИГА НА СПЕКТРЫ И КИНЕТИКУ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕНЦИИ ВЛИЯНИЕ ОТЖИГА НА ПАРАМЕТРЫ ФОСФОРЕСЦЕНЦИИ ДОНОРА ЭНЕРГИИ ИССЛЕДОВАНИЕ ЗАКОНА НАКОПЛЕНИЯ ЧИСЛА МОЛЕКУЛ АКЦЕПТОРА, УЧАСТВУЮЩИХ В ИЗЛУЧЕНИИ, В ПРОЦЕССЕ ОТЖИГА ОПРЕДЕЛЕНИЕ ЭНЕРГИИ АКТИВАЦИИ ПРОЦЕССА, ПРИВОДЯЩЕГО К УВЕЛИЧЕНИЮ ЧИСЛА МОЛЕКУЛ АКЦЕПТОРА, УЧАСТВУЮЩИХ В ИЗЛУЧЕНИИ
218705
знаков
14
таблиц
26
изображений

4.2 ВЛИЯНИЕ ОТЖИГА НА СПЕКТРЫ И КИНЕТИКУ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕНЦИИ

Если в результате отжига замороженного н.-парафинового раствора органических соединений снимается концентрационное тушение сенсибилизированной фосфоресценции, то можно ожидать, что при этом параметры спектров и кинетики сенсибилизированной фосфоресценции будут изменяться также, как при понижении концентрации раствора. С целью проверки этого предположения было исследовано влияние отжига на спектры сенсибилизированной фосфоресценции нафталина (рис. 21) и аценафтена (рис. 22) в н.-октане и кинетику сенсибилизированной фосфоресценции аценафтена (табл. 10 и 11).


На рис. 21 приведены спектры фосфоресценции пары бензофенон-нафталин в н.-октане для неотожжённого (а) и отожжённого (б) образцов. Возбуждался только донор энергии. Цифрами 1 на рисунке обозначены линии, принадлежащие спектру фосфоресценции бензофенона, цифрами 2 – спектру сенсибилизированной фосфоресценции нафталина.

Как видно из рис. 21, в результате отжига наблюдается увеличение интенсивности сенсибилизированной фосфоресценции. При этом также наблюдается и увеличение интенсивности фосфоресценции молекул донора. Однако, увеличение интенсивности фосфоресценции молекул донора при этом происходит в меньшее число раз. Так, интенсивность фосфоресценции бензофенона после отжига увеличивается в 4 раза, а интенсивность сенсибилизированной фосфоресценции нафталина увеличивается после отжига в 40 раз.

В результате отжига раствора происходит также смещение максимума 0-0 полосы lmax в коротковолновую область на 40-50 см-1. Для неотожжённого образца lmax – 473.0 нм, для отожжённого – 472.0 нм.


На рис. 22 приведён спектр фосфоресценции пары бензофенон-аценафтен в н.-октане для неотожжённого образца (а) и для отожжённого в течение 4 мин. при 180 К (б). Как видно, и в этом случае отжиг приводит к увеличению как интенсивности фосфоресценции донора, так и интенсивности сенсибилизированной фосфоресценции акцептора. Рост интенсивности фосфоресценции донора при этом меньше, чем акцептора. При этом так же наблюдается смещение максимума 0-0 полосы в спектре фосфоресценции аценафтена в коротковолновую область на 40-50 см –1.

 Таким образом, сравнение спектральных характеристик неотожжённого и отожжённого образцов показало, что отжиг приводит к смещению максимума 0-0 полосы в спектре сенсибилизированной фосфоресценции в коротковолновую область, а так же к увеличению интенсивности свечения как акцептора, так и донора энергии.

Изучение влияния отжига на кинетические характеристики сенсибилизированной фосфоресценции, в частности на время затухания tТ, производилось на паре бензофенон-аценафтен в н.-октане. Результаты этих измерений приведены в табл. 12.

Таблица 12.

Параметры сенсибилизированной фосфоресценции аценафтена различной концентрации (СА) до и после отжига.

(Отжиг производился в течение 5 мин. при 175 К; в качестве донора использовался бензофенон неизменной концентрации – СБ = 5×10-3 М; растворитель – н.-октан.)

СА, М

Iот/Iнеот

lmнеот, нм

lmот, нм

tТнеот, с

tТот, с

5×10-3

7.5 481.5 480.5 1.65 2.50

10-3

1.3 481.0 480.0 2.40 2.65

5×10-4

1.1 480.5 480.0 2.60 2.70

Для исследования использовались различные концентрации акцептора энергии: 5×10-3 М – из области, где наблюдается сильное концентрационное тушение сенсибилизированной фосфоресценции, 10-3 и 5×10-4 М – из области, где тушение уменьшается. Концентрация донора не изменялась и была равна 5×10-3 М. Отжиг производился во всех случаях при температуре 175 К, в течение 5 минут. Такие время и температура отжига, с точки зрения предварительных оценочных экспериментов, приводят к максимальному значению интенсивности по достижению насыщения за указанный промежуток времени.

 В столбце 2 табл. 12 приведено отношение интенсивности сенсибилизированной фосфоресценции после отжига Iот к его значению до отжига Iнеот при заданной концентрации акцептора. Данные опыта свидетельствуют о максимальном росте интенсивности сенсибилизированной фосфоресценции после отжига при концентрации 5×10-3 М. Концентрации 10-3 и 5×10-4 М после отжига дают незначительное увеличение интенсивности.

В 3 и 4 столбцах таблицы указаны положения максимумов 0-0 полосы в спектре сенсибилизированной фосфоресценции аценафтена до (lmнеот) и после (lmот) отжига. При всех рассмотренных концентрациях после отжига максимум смещается в сторону коротких длин волн. В первом случае это смещение составляет 10 , в двух последующих – 5 . Если проследить изменение положения максимума по столбцам, при понижении концентрации акцептора, то очевидно аналогичное поведение системы. Уменьшение концентрации так же ведёт к коротковолновому смещению максимума.

В двух последних столбцах представлены значения времени затухания сенсибилизированной фосфоресценции неотожжённого - tТнеот и отожжённого - tТот образцов. Для каждого из рассмотренных случаев после отжига наблюдается более медленное затухание свечения. При концентрации 5×10-3 М увеличение времени затухания после отжига происходит на величину 0.85 с и составляет наибольшее значение в данном опыте, при 10-3 М tТот увеличивается на 0.15 с по сравнению с tТнеот, при 5×10-4 М – на 0.1 с. Если проследить поведение системы относительно данного параметра при понижении концентрации акцептора, то можно увидеть подобные результаты: уменьшение концентрации акцептора ведёт к увеличению времени затухания сенсибилизированной фосфоресценции.

Таким образом, исследования спектральных и кинетических характеристик сенсибилизированной фосфоресценции неотожжённого и отожжённого образцов при различных концентрациях показали, что процесс низкотемпературного отжига и уменьшение концентрации акцептора в растворе приводят к одинаковым результатам, а именно:

1)   увеличению интенсивности (для области, где наблюдается концентрационное тушение);

2)   коротковолновому смещению максимума 0-0 полосы;

3)   увеличению времени затухания.

С целью установления причин увеличения интенсивности сенсибилизированной фосфоресценции примесных молекул в данных системах в результате отжига образца была определена относительная заселённость триплетного уровня молекул акцептора  до и после отжига. Результаты этих исследований представлены в табл. 13. Здесь же приведены результаты определения константы перехода kП молекул аценафтена из основного в триплетное состояние в различных растворителях.

Таблица 13.

Параметры, характеризующие молекулы аценафтена в условиях переноса возбуждения, донор – бензофенон, до и после отжига.

Растворитель

СБ, М

СА, М

, отн.ед.

kП, с-1

Iот/Iнеот

неотож. отож. неотож. отож.
н.-октан

5×10-3

5×10-3

0.46 0.50 0.49 0.42 10
н.-гептан

5×10-2

5×10-2

0.38 0.32 0.29 0.21 2
н.-гексан

10-2

10-2

0.35 0.33 0.25 0.21 2

Относительная погрешность при определении  и kП составляла не более 10 %.

Как видно из таблицы, разница в значениях  и kП для отожжённого и неотожжённого образца не превышает ошибки измерения, тогда как интенсивность сенсибилизированной фосфоресценции в результате отжига увеличивается в несколько раз. С учётом формулы (40) можно сделать вывод, что увеличение интенсивности сенсибилизированной фосфоресценции в результате отжига происходит не за счёт изменения  , а за счёт увеличения числа молекул акцептора NA, участвующих в излучении сенсибилизированной фосфоресценции.

Для того, чтобы выяснить, за счёт каких процессов происходит увеличение числа молекул акцептора, участвующих в излучении сенсибилизированной фосфоресценции, необходимо было также изучить влияние отжига на параметры фосфоресценции молекул донора в присутствие молекул акцептора в растворе. Результаты этих исследований приведены в следующем параграфе.


Информация о работе «Влияние температуры на концентрацию триплетных молекул в твердых растворах при сенсибилизированном возбуждении»
Раздел: Физика
Количество знаков с пробелами: 218705
Количество таблиц: 14
Количество изображений: 26

Похожие работы

Скачать
107365
9
6

... основном состоянии на вероятность излучательной дезактивации энергии триплетного возбуждения в акцепторе показали следующее. Такое взаимодействие увеличивает вероятность дезактивации триплетных молекул акцептора в системах для которых. При этом константа скорости излучательного перехода экспоненциально увеличивается с уменьшением среднего расстояния между компонентами донорно-акцепторной смеси. ...

Скачать
77943
2
4

... между молекулами были установлены В.Л Ермолаевым при изучении данного явления для органических соединений в твердых растворах. Эти закономерности были выявлены на основании изучения влияния акцептора на параметры фосфоресценции донора и особенностей сенсибилизированной фосфоресценции. При экспериментальном изучении явления сенсибилизированной фосфоресценции донорно-акцепторные пары обычно ...

Скачать
99713
4
19

... , что опасность тушения веществами, которая появляется в методе внутреннего стандарта сильно переоценивается Персоновым и Теплицкой. Из всего вышесказанного ясно, что методы спектрального анализа нашли самое широкое применение и в медицине и в нефтеперерабатывающей промышленности и в фундаментальных исследованиях. Поэтому важную роль при использовании спектров органических соединений играет их ...

Скачать
89044
1
4

... : ,(2.8) где фотопроводимость; — константа для данного образца;  — термическая энергия активации проводимости (обычно 0,1—0,3 эв). Знак световых носителей тока у большинства органических полупроводников дырочный. Некоторые адсорбированные пары и газы существенно изменяют фотоэлектрическую чувствительность органических полупроводников. Зависимость фототока от освещенности выражается ...

0 комментариев


Наверх