МЕХАНИЗМЫ КОНЦЕНТРАЦИОННОГО ТУШЕНИЯ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ В РАСТВОРАХ

Влияние температуры на концентрацию триплетных молекул в твердых растворах при сенсибилизированном возбуждении
МЕЖМОЛЕКУЛЯРНЫЙ ПЕРЕНОС ЭНЕРГИИ ТРИПЛЕТНОГО ВОЗБУЖДЕНИЯ В ТВЁРДЫХ РАСТВОРАХ МЕХАНИЗМЫ КОНЦЕНТРАЦИОННОГО ТУШЕНИЯ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ В РАСТВОРАХ ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА МЕЖМОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ ПРИМЕСНЫХ ОРГАНИЧЕСКИХ МОЛЕКУЛ В РАСТВОРАХ РАСТВОРИТЕЛИ И СОЕДИНЕНИЯ МЕТОДИКА ЭКСПЕРИМЕНТА ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ТРИПЛЕТНОГО СОСТОЯНИЯ МОЛЕКУЛ АКЦЕПТОРА ИЗ КИНЕТИКИ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕЦИИ ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ИНТЕНСИВНОСТИ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕНЦИИ ОРГАНИЧЕСКИХ МОЛЕКУЛ ВЛИЯНИЕ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ И РАСТВОРИТЕЛЯ НА ПАРАМЕТРЫ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕНЦИИ НЕОБРАТИМЫЙ ХАРАКТЕР ХОДА КРИВОЙ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ КОНЦЕНТРАЦИИ ТРИПЛЕТНЫХ МОЛЕКУЛ АКЦЕПТОРА ВЛИЯНИЕ СКОРОСТИ ЗАМОРАЖИВАНИЯ НА ПАРАМЕТРЫ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕНЦИИ ОСНОВНЫЕ РЕЗУЛЬТАТЫ ГЛАВЫ 3 ВЛИЯНИЕ ОТЖИГА НА СПЕКТРЫ И КИНЕТИКУ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕНЦИИ ВЛИЯНИЕ ОТЖИГА НА ПАРАМЕТРЫ ФОСФОРЕСЦЕНЦИИ ДОНОРА ЭНЕРГИИ ИССЛЕДОВАНИЕ ЗАКОНА НАКОПЛЕНИЯ ЧИСЛА МОЛЕКУЛ АКЦЕПТОРА, УЧАСТВУЮЩИХ В ИЗЛУЧЕНИИ, В ПРОЦЕССЕ ОТЖИГА ОПРЕДЕЛЕНИЕ ЭНЕРГИИ АКТИВАЦИИ ПРОЦЕССА, ПРИВОДЯЩЕГО К УВЕЛИЧЕНИЮ ЧИСЛА МОЛЕКУЛ АКЦЕПТОРА, УЧАСТВУЮЩИХ В ИЗЛУЧЕНИИ
218705
знаков
14
таблиц
26
изображений

1.2 МЕХАНИЗМЫ КОНЦЕНТРАЦИОННОГО ТУШЕНИЯ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ В РАСТВОРАХ

 

На тушение люминесценции при увеличении концентрации растворов обращал внимание ещё Вавилов [88]: «Свечение растворов (как и всякое свечение в обычной оптической трактовке) может быть характеризовано четырьмя свойствами – спектрами излучения и поглощения, выходом, поляризацией и длительностью. Опыт показывает, что все эти свойства при значительном возрастании концентрации раствора могут претерпевать изменения: спектры деформируются, выход падает, поляризация свечения так же убывает, уменьшается и длительность свечения».

Природа концентрационного тушения возбужденных состояний из-за сложности и многообразия возможных причин является и в наши дни предметом многочисленных исследований. В разное время этому явлению были даны различные объяснения, большинство из которых теперь имеют лишь исторический интерес.

В обзоре Южакова В. И. [20], обобщающем результаты экспериментальных и теоретических работ по концентрационному тушению возбужденных состояний, показано, что к тому времени наметились два основных подхода в объяснении его природы. Первый основывался на возможности индукционно-резонансной миграции электронного возбуждения между мономерными молекулами. Эти представления затем были положены в основу миграционной теории концентрационного тушения люминесценции. Согласно данной теории, тушение возбужденных состояний при больших концентрациях люминесцирующих веществ происходит за счёт резонансной передачи энергии электронного возбуждения от одной молекулы красителя, находящейся в мономерной форме к другой такой же молекуле. При этом часть таких переходов сопровождается тушением.

Другой подход в объяснении концентрационного тушения возбужденных состояний подчёркивал важность обратимой ассоциации молекул люминесцирующих веществ. Это явление объяснялось неактивным поглощением нелюминесцирующих ассоциатов. В дальнейшем была развита теория тушения люминесценции за счёт миграции энергии возбуждения с мономеров на ассоциаты. Ассоциационная теория концентрационного тушения возбужденных состояний, созданная Лёвшиным В. Л. с сотрудниками, предусматривает собственное неактивное поглощение ассоциатов и миграцию возбуждения с мономеров на эти ассоциаты.

В дальнейшем оба подхода были подтверждены последующими исследованиями.

Миграционная теория концентрационного тушения люминесценции была развита в ряде теоретических работ [8,15-17,89-94] и подтверждена экспериментально [18,71,72,95-98].

Под миграцией энергии подразумевается передача возбуждения только между центрами одинаковой природы. В зависимости от природы возбуждений их перенос осуществляется либо дальнодействующим (мультипольным), либо короткодействующим (обменным) межцентровым взаимодействием.

Делокализация возбуждения по системе случайно расположенных одинаковых центров складывается в диффузию. В работах [8,16,93] методами теории неупорядоченных систем найдена концентрационная зависимость коэффициента диффузии как при мультипольном, так и при обменном взаимодействии.

Однако возможность диффузии возбуждения на большие расстояния вовсе не означает, что его тушение обязательно является диффузионным. Зона тушения вокруг акцептора может быть настолько узка, что возбуждение способно попасть внутрь неё и выйти наружу однократным перемещением, а не последовательностью мелких шагов, складывающихся в континуальную диффузию. Одноактное тушение называют прыжковым. Скорости диффузионного и прыжкового тушения по разному зависят от концентрации доноров и микропараметров переноса возбуждения [8,16]. В разбавленных растворах, по мнению авторов [93], следует отдать предпочтение прыжковому механизму тушения.

В обзорах Бодунова Е. Н. [15,16] проведён анализ различных теоретических методов: Монте-Карло, непрерывных во времени случайных блужданий, эффективной среды и самосогласованный графический, используемых при исследовании спектральной миграции возбуждения в трёхмерных средах. Анализируется зависимость положения и формы неоднородно уширенного спектра люминесценции от времени и концентрации молекул при различных условиях возбуждения среды и механизмах межчастичного взаимодействия. Приводятся концентрационные зависимости квантового выхода люминесценции сред, содержащих два сорта молекул (доноров и акцепторов энергии возбуждений).

При вычислении параметров люминесценции в [15,16] основное внимание уделяется мультипольному взаимодействию. Для обменного взаимодействия вычисляется лишь коэффициент диффузии возбуждения. Это по-видимому связано с тем, что обменные взаимодействия осуществляются на меньших расстояниях по сравнению с мультипольными. Если индуктивно-резонансные взаимодействия разрешены правилами отбора, то они обладают преимуществом перед обменно-резонансными. Но если передача энергии по всем видам кулоновского взаимодействия запрещена, как в случае передачи энергии триплетного возбуждения, то обменный механизм миграции возбуждения является основным. Недостаток теоретических работ, рассматривающих влияние миграции триплетного возбуждения по системе случайно расположенных центров на параметры выхода их фосфоресценции, делает сложным выявление данного механизма тушения в рассматриваемых системах.

В работе [97] показано, что миграция энергии возбуждения в условиях неоднородного уширения спектров растворённого вещества при определённом соотношении между временами жизни возбуждённого состояния, миграции и релаксации приводит к концентрационному длинноволновому смещению спектров люминесценции органических красителей в различных растворителях. Как в твёрдых телах, так и в жидких растворах центры люминесценции одних и тех же веществ не являются идентичными вследствие различия их ближайшего окружения. При этом, помимо смещения энергетических уровней примесных центров, от величины локальных полей зависят и вероятности излучательных и безызлучательных переходов в молекулах растворенного вещества, а следовательно, и времена жизни возбуждённого состояния [77]. Направленность миграционных процессов при наличии расстройки энергетических уровней взаимодействующих молекул с повышением концентрации растворённого вещества приводит к увеличению заселённости первого возбуждённого состояния молекул с наиболее низко расположенными уровнями энергии. Направленная миграция на такие молекулы проявляется в концентрационном длинноволновом смещении спектров свечения. Если величина квантового выхода люминесценции молекул значительно уменьшается с понижением их возбуждённых уровней, то при этом также возникает концентрационное тушение люминесценции.

Однако, авторами [96] показано, что механизм миграции по мономерным молекулам обнаруживается только при отсутствии в растворе ассоциатов. Если в растворе имеются физико-химические образования, то изменения в спектрах и кинетике, обусловленные этими взаимодействиями превосходят остальные, упомянутые выше.

Увеличение концентрации раствора обычно сопровождается развитием межмолекулярных взаимодействий, часто приводящих к ассоциации молекул различной степени сложности. В результате в растворе наряду с мономерными молекулами появляются центры, существенно изменяющие оптические свойства раствора. Экспериментально наблюдаются разнообразные изменения спектров поглощения и люминесценции растворов, падение квантового выхода свечения и других параметров [99-103]. Это связано со сложными межмолекулярными взаимодействиями в растворах органических соединений и различной природой сил, объединяющих молекулы в ассоциаты.

Образование ассоциатов может происходить как за счёт сил Ван-дер-Ваальса, так и благодаря возникновению водородных связей [20,104]. Вклад ориентационного, индукционного и дисперсионного членов в Ван-дер-Ваальсовское взаимодействие определяется природой молекул примесей и растворителя.

Среди органических молекул наиболее изученными с точки зрения образования ассоциатов являются молекулы красителей и класса хлорофиллов [20]. Молекулы красителей хорошо ассоциируют в воде, в смесях полярных и неполярных растворителей. В полярных растворителях, где происходит сильная сольватация молекул красителей, их агрегация происходит при больших концентрациях. В неполярных растворителях молекулы хлорофилла ассоциируют уже при небольших концентрациях, однако красители в таких растворителях обычно не растворяются. Влияние растворителя на процессы ассоциации определяется тем, в какой степени способствует или препятствует объединению молекул красителей окружающая их сольватная оболочка.

Теория Ван-дер-Ваальсовых сил построена на предположении, что расстояние между взаимодействующими молекулами больше их поперечных размеров. При малых межмолекулярных расстояниях, характерных для высококонцентрированных растворов, вероятно, могут приобрести значение и силы, убывающие быстрее, чем 1/R6, например, силы, связанные с квадрупольным или обменным взаимодействием. В работе [105] было показано, что процессы ассоциации, вызывающие появление новых полос поглощения, характеризуют объединение молекул в одной общей сольватной оболочке на расстоянии ~ 8-10 Å. Обычно считается, что величина Ван-дер-Ваальсовского взаимодействия для молекул красителей не превышает 2 ккал/моль. Однако, это нельзя считать строго установленным фактом. В обзоре [20] упомянуто, что расчёты, выполненные Коулсоном и Девисом для молекул с мощными p-электронными облаками дают значение дисперсионного взаимодействия более десятка ккал/моль.

Другая точка зрения заключается в том, что объединение молекул красителей в ассоциаты происходит за счёт водородных связей. На основании анализа экспериментальных результатов, полученных в ряде работ для большого числа красителей, автором [19] показано, что представлению о дисперсионных силах, играющих основную роль при образовании ассоциатов, противоречат многие экспериментальные факты. Это прежде всего резкая зависимость эффективности процесса ассоциации от природы используемых растворителей и структуры молекул красителя. Наиболее подвержены образованию водородных связей полярные молекулы.

Образование ассоциатов может происходить и между различными молекулами. Разнородные ассоциаты обладают спектральными свойствами, отличными от мономеров и однородных ассоциатов. Они могут влиять на характер процессов переноса энергии возбуждения в смешанных растворах и служить дополнительными центрами её захвата.

 Авторами [106] обнаружено существование как люминесцирующих разнородных ассоциатов – родамин 6Ж + метиленовый голубой, так и нелюминесцирующих – родамин 6Ж + бензопурпурин 4Б в буферных водных растворах. Здесь же показано, что перенос энергии на разнородные ассоциаты осуществляется с большей скоростью, чем на однородные или на мономеры. Так, критическое расстояние передачи энергии, рассчитанное авторами по спектральным характеристикам, между мономерами родамин 6Ж и метиленовый голубой R0 = 20 Ǻ, от мономерам к ассоциатам метиленового голубого R0 = 23 Ǻ, а от молекул родамин 6Ж на смешанные ассоциаты R0 = 47 Ǻ. Результаты говорят о том, что миграция на разнородные ассоциаты происходит со скоростью, большей почти на два порядка.

 Как упоминалось выше, концентрационное тушение люминесценции вследствие неоднородного уширения спектров может быть обнаружено только при отсутствии в растворе более активных центров тушения. Таковыми являются либо другие примеси, эффективно осуществляющие тушение, либо однородные и разнородные ассоциаты. В этом случае миграция энергии возбуждения по системе одинаковых примесных центров, случайно, но равномерно распределёнными в твёрдой или жидкой среде, способствует доставке его к ловушкам энергии. С ростом концентрации донорных центров расстояние между ними сокращаются, а взаимодействие, ответственное за резонансный перенос энергии, усиливается. Это ускоряет миграцию возбуждения и сокращает время поиска ловушки, на которую энергия передаётся необратимо. В результате время жизни возбуждения монотонно сокращается с увеличением концентрации возбуждаемых центров [107]. Такой механизм тушения получил название миграционно-ускоренного тушения.

Процесс образования ассоциатов может осуществляться как между разнородными молекулами примесей, так и между молекулами примесей и растворителя. Например, в работе [108] исследованы молекулы аминокумаринов, которые обладают протонно-акцепторными свойствами. Взаимодействуя с молекулами протонно-донорного растворителя – этанола, они образуют комплексы с водородной связью. Н-связь возникает между карбонильной группой (>С=О) молекул красителей и оксигруппой (-ОН) растворителя. Вычислена энергия связи – 1400 см-1 . Такие комплексы обуславливают появление длинноволнового максимума в спектре поглощения и сдвиг максимума в спектре люминесценции (~35 нм при азотной температуре) в сторону коротких волн.

Таким образом, ассоциация молекул приводит к самым разным изменениям в спектрах поглощения и люминесценции молекул примесей. Это говорит о том, что вопрос о природе сил, объединяющих молекулы в ассоциаты, должен решаться в каждом конкретном случае по-своему. Силы же Ван-дер-Ваальса, как универсальные силы, всегда действуют между молекулами на достаточно близком расстоянии, однако в некоторых случаях теряют первостепенную роль.

 В жидкости процесс ассоциации является обратимым. Все концентрационные эффекты полностью исчезают, а первоначальные оптические свойства растворов, содержащих мономерные молекулы исследуемого вещества, полностью восстанавливаются при обратном разведении концентрированных растворов [20].

Понижение температуры растворов сдвигает равновесие между мономерными молекулами и ассоциированными в сторону ассоциатов [20].

Кроме ассоциатов молекул в основном состоянии, возможно образование возбуждённых димеров. Они состоят из возбуждённой и невозбуждённой молекул, объединяющихся за время меньшее, чем средняя длительность их возбуждённого состояния. Эти возбуждённые димеры, получившие название эксимеров (одинаковые молекулы), эксиплексов (разные молекулы), обуславливают сильные изменения спектра люминесценции при постоянстве спектра поглощения [109-111].

Подводя итог анализа литературных данных по процессу ассоциации органических молекул, можно заметить, что основными объектами при его исследовании являлись жидкие растворы. Процессу образования ассоциатов в твердых растворах в литературе уделено значительно меньше внимания.

Обобщив наметившиеся к настоящему времени подходы к вопросу концентрационного тушения возбужденных состояний можно утверждать, что его причинами являются либо физико-химические (ФХ), либо резонансные (Р) взаимодействия между молекулами. Причём последние могут иметь обменный (близкодействующий), либо мультипольный (дальнодействующий) характер.

Эти причины могут приводить к изменению спектров поглощения и люминесценции, падению квантового выхода свечения, уменьшению времени его затухания. Основные механизмы, обуславливающие изменение параметров свечения в результате данных взаимодействий следующие:

1.   Неактивное поглощение света ассоциатами (ФХ взаимодействие);

2.   Миграция энергии между мономерными молекулами по индуктивно-резонансному или по обменно-резонансному механизму (Р взаимодействие);

3.   Миграция энергии на ассоциаты (ФХ и Р взаимодействие);

4.   Изменение внутримолекулярных безызлучательных констант. (ФХ и Р взаимодействие).

В литературе последний механизм тушения изучен недостаточно подробно, однако имеются факты, подтверждающие его существование и в ряде случаев его первостепенное значение. К одному из них можно отнести вопрос о том, почему образовавшиеся ассоциаты в основном не люминесцируют или слабо люминесцируют [77].

Рассмотренные механизмы могут обуславливать также тушение возбужденных состояний в условиях переноса энергии. Под таким углом зрения этот вопрос до настоящего времени не рассматривался. Хотя очевидно, что благоприятные для тушения условия создаются именно в концентрированных растворах, которые и являются необходимыми для наблюдения переноса энергии, особенно по обменно-резонансному механизму. Расхождения в определении параметров переноса энергии между органическими молекулами в твердых растворах ранее не связывались ни с возможным тушением, вызванным миграцией энергии, ни с влиянием ассоциатов на процесс перераспределения энергии в системе. Процесс ассоциации ароматических углеводородов так же остаётся малоизученным, тогда как именно на этих системах проверены основные параметры межмолекулярного триплет-триплетного переноса энергии.

На наличие дополнительных механизмов тушения, кроме переноса энергии с донора на акцептор, указывают также проведенные нами предварительные экспериментальные исследования. Они показали, что квантовый выход сенсибилизированной фосфоресценции может уменьшаться при увеличении концентрации молекул акцептора в растворе. Эти факты указывают на необходимость исследования механизмов тушения как в условиях прямого, так и сенсибилизированного возбуждения.

В случае однокомпонентных растворов ароматических углеводородов концентрационное поведение спектров излучения и поглощения в н.-парафиновых твёрдых растворителях исследовалось многими авторами (например, [26,112-115]).

Шпольским Э.В. с сотрудниками [26] были исследованы спектры флуоресценции и поглощения нафталина в н.-гептане и циклогексане при 77 К в диапазоне концентраций 10-2 – 10-4 М. Спектры флуоресценции растворов нафталина, состоящие при малых концентрациях из сравнительно широких полос, приобретают при увеличении концентрации квазилинейчатый характер. Авторы объясняют это следующим образом: « …за квазилинейчатые спектры флуоресценции и поглощения ответственны изолированные молекулы вещества "устроившиеся" в кристаллической матрице растворителя. Оказывается, что число таких молекул ограничено, так что для разных соединений существует предельная концентрация, выше которой интенсивность квазилинейчатого спектра не возрастает; если концентрация несколько превышает предельную, то на квазилинейчатый спектр флуоресценции накладывается полосатый молекулярный спектр, аналогичный спектру данного соединения в стеклообразном растворителе. Таким образом, за спектр флуоресценции растворов нафталина малых концентраций ответственны молекулы, "неустроенные" в кристаллической матрице растворителя. Повышение концентрации раствора приводит к агрегации таких молекул, чему способствует кристаллический характер матрицы. Агрегаты нафталина характеризуются своим собственным спектром поглощения и не люминесцируют. Поэтому при полной агрегации неустроенных молекул становится заметным квазилинейчатый спектр изолированных "устроившихся" в матрице растворителя молекул нафталина.»

Болотниковой Т. Н. и Наумовой Т. М. [116] установлено аналогичное поведение спектров фосфоресценции замороженных растворов нафталина в гексане и фенантрена в октане при изменении концентраций от 10-5 до 10-1М.

Таким образом, в н.-парафиновых растворах концентрационное тушение люминесценции наблюдается при более низких средних концентрациях, чем в стеклообразных матрицах. Это достигается созданием повышенных локальных концентраций молекул примесей на поверхностях микрокристаллов растворителя при вытеснении "лишних" молекул, превышающих предельную концентрацию "устроенных". Так как предел концентрации "устроенных" молекул определяется "удобством" растворителя, то в "неудобных" растворителях практически все молекулы примесей будут находиться на поверхности микрокристаллов. В таких условиях даже при низких концентрациях молекул примесей могут возникать условия, способствующие концентрационному тушению люминесценции, так же как и переносу энергии. Исследованию механизмов тушения люминесценции в "неудобных" н.-парафиновых растворителях в литературе уделено недостаточное внимание. Тем не менее, на наш взгляд, они являются хорошими модельными системами, позволяющими изучать особенности переноса энергии в условиях концентрационного тушения люминесценции.


Информация о работе «Влияние температуры на концентрацию триплетных молекул в твердых растворах при сенсибилизированном возбуждении»
Раздел: Физика
Количество знаков с пробелами: 218705
Количество таблиц: 14
Количество изображений: 26

Похожие работы

Скачать
107365
9
6

... основном состоянии на вероятность излучательной дезактивации энергии триплетного возбуждения в акцепторе показали следующее. Такое взаимодействие увеличивает вероятность дезактивации триплетных молекул акцептора в системах для которых. При этом константа скорости излучательного перехода экспоненциально увеличивается с уменьшением среднего расстояния между компонентами донорно-акцепторной смеси. ...

Скачать
77943
2
4

... между молекулами были установлены В.Л Ермолаевым при изучении данного явления для органических соединений в твердых растворах. Эти закономерности были выявлены на основании изучения влияния акцептора на параметры фосфоресценции донора и особенностей сенсибилизированной фосфоресценции. При экспериментальном изучении явления сенсибилизированной фосфоресценции донорно-акцепторные пары обычно ...

Скачать
99713
4
19

... , что опасность тушения веществами, которая появляется в методе внутреннего стандарта сильно переоценивается Персоновым и Теплицкой. Из всего вышесказанного ясно, что методы спектрального анализа нашли самое широкое применение и в медицине и в нефтеперерабатывающей промышленности и в фундаментальных исследованиях. Поэтому важную роль при использовании спектров органических соединений играет их ...

Скачать
89044
1
4

... : ,(2.8) где фотопроводимость; — константа для данного образца;  — термическая энергия активации проводимости (обычно 0,1—0,3 эв). Знак световых носителей тока у большинства органических полупроводников дырочный. Некоторые адсорбированные пары и газы существенно изменяют фотоэлектрическую чувствительность органических полупроводников. Зависимость фототока от освещенности выражается ...

0 комментариев


Наверх