ИССЛЕДОВАНИЕ ЗАКОНА НАКОПЛЕНИЯ ЧИСЛА МОЛЕКУЛ АКЦЕПТОРА, УЧАСТВУЮЩИХ В ИЗЛУЧЕНИИ, В ПРОЦЕССЕ ОТЖИГА

Влияние температуры на концентрацию триплетных молекул в твердых растворах при сенсибилизированном возбуждении
МЕЖМОЛЕКУЛЯРНЫЙ ПЕРЕНОС ЭНЕРГИИ ТРИПЛЕТНОГО ВОЗБУЖДЕНИЯ В ТВЁРДЫХ РАСТВОРАХ МЕХАНИЗМЫ КОНЦЕНТРАЦИОННОГО ТУШЕНИЯ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ В РАСТВОРАХ ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА МЕЖМОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ ПРИМЕСНЫХ ОРГАНИЧЕСКИХ МОЛЕКУЛ В РАСТВОРАХ РАСТВОРИТЕЛИ И СОЕДИНЕНИЯ МЕТОДИКА ЭКСПЕРИМЕНТА ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ТРИПЛЕТНОГО СОСТОЯНИЯ МОЛЕКУЛ АКЦЕПТОРА ИЗ КИНЕТИКИ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕЦИИ ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ИНТЕНСИВНОСТИ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕНЦИИ ОРГАНИЧЕСКИХ МОЛЕКУЛ ВЛИЯНИЕ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ И РАСТВОРИТЕЛЯ НА ПАРАМЕТРЫ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕНЦИИ НЕОБРАТИМЫЙ ХАРАКТЕР ХОДА КРИВОЙ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ КОНЦЕНТРАЦИИ ТРИПЛЕТНЫХ МОЛЕКУЛ АКЦЕПТОРА ВЛИЯНИЕ СКОРОСТИ ЗАМОРАЖИВАНИЯ НА ПАРАМЕТРЫ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕНЦИИ ОСНОВНЫЕ РЕЗУЛЬТАТЫ ГЛАВЫ 3 ВЛИЯНИЕ ОТЖИГА НА СПЕКТРЫ И КИНЕТИКУ СЕНСИБИЛИЗИРОВАННОЙ ФОСФОРЕСЦЕНЦИИ ВЛИЯНИЕ ОТЖИГА НА ПАРАМЕТРЫ ФОСФОРЕСЦЕНЦИИ ДОНОРА ЭНЕРГИИ ИССЛЕДОВАНИЕ ЗАКОНА НАКОПЛЕНИЯ ЧИСЛА МОЛЕКУЛ АКЦЕПТОРА, УЧАСТВУЮЩИХ В ИЗЛУЧЕНИИ, В ПРОЦЕССЕ ОТЖИГА ОПРЕДЕЛЕНИЕ ЭНЕРГИИ АКТИВАЦИИ ПРОЦЕССА, ПРИВОДЯЩЕГО К УВЕЛИЧЕНИЮ ЧИСЛА МОЛЕКУЛ АКЦЕПТОРА, УЧАСТВУЮЩИХ В ИЗЛУЧЕНИИ
218705
знаков
14
таблиц
26
изображений

4.4 ИССЛЕДОВАНИЕ ЗАКОНА НАКОПЛЕНИЯ ЧИСЛА МОЛЕКУЛ АКЦЕПТОРА, УЧАСТВУЮЩИХ В ИЗЛУЧЕНИИ, В ПРОЦЕССЕ ОТЖИГА

В 4.2 было показано, что увеличение интенсивности сенсибилизированной фосфоресценции в результате отжига образца происходит за счёт увеличения числа молекул акцептора, участвующих в излучении. Поэтому для выяснения физической природы процесса, приводящего к увеличению общего числа молекул акцептора, участвующих в излучении, необходимо было изучить закон их накопления в процессе отжига.

Обозначим интенсивность сенсибилизированной фосфоресценции после быстрого замораживания образца до 77 К через I(0). После отжига образца в течение определённого времени t при температуре Т и последующем охлаждении до 77 К интенсивность сенсибилизированной фосфоресценции обозначим через I(t). Тогда DI(t) = I(t) – I(0) – означает прирост интенсивности сенсибилизированной фосфоресценции в процессе отжига образца в течение этого времени.

По характеру кривых зависимостей относительной интенсивности сенсибилизированной фосфоресценции от времени отжига (рис. 17, 18) можно предположить, что при фиксированной температуре Т прирост интенсивности DI(t) в зависимости от времени отжига происходит по закону, определяемому экспонентой:

DI(t) = DI(¥){1-exp(-t/t)}, (45)

с характерным временем t, которое зависит от температуры отжига. DI(¥) - прирост интенсивности при длительном отжиге образца - t » t.


Экспериментально эта зависимость была проверена для пар – бензофенон-аценафтен в н.-октане и н.-декане и бензофенон-нафталин в н.-гексане, н.-октане и н.-декане. На рис. 23-27 в указанном порядке для данных соединений представлены графики зависимости [DI(t) - DI(¥)]/DI(¥) от t в полулогарифмическом масштабе.

Как видно из рисунков, экспериментальные точки хорошо укладываются на экспоненту (сплошная линия) с различными углами наклона, определяемыми температурой отжига. Ве личина, обратная тангенсу угла наклона прямых, соответствует характерному времени t процесса при данной температуре отжига.

В табл. 15 приведены значения t , определённые из представленных на рис. 23-27 зависимостей.

Как видно из таблицы, для всех исследованных систем повышение температуры отжига раствора приводит к уменьшению характерного времени процесса нарастания.

Таким образом, на основании этих экспериментальных данных можно утверждать, что прирост стационарной интенсивности сенсибилизированной фосфоресценции в процессе отжига хорошо описывается экспонентой (39) с характерным временем t, которое уменьшается при повышении температуры отжига.

Поскольку, как отмечалось выше, в отсутствие реабсорбции излучения интенсивность сенсибилизированной фосфоресценции I(t) пропорциональна концентрации триплетных молекул акцептора энергии nT(t), то для последних также можно записать:

DnT(t) = DnT(¥){1 - exp(-t/t)}, (46)

где DnT(t)- изменение концентрации триплетных молекул нафталина за время отжига t.

Таблица 15.

Характерное время t процесса нарастания числа одиночных молекул акцептора, участвующих в переносе энергии в процессе отжига.

Соединение

Растворитель Концентрация

Температура отжига, К

t, мин.

Бензофенон

+

аценафтен

н.-октан

СБ = 5×10-3 М

СА = 5×10-3 М

161 3.06
167 0.99
173 0.38
н.-декан

СБ = 10-3 М

СА = 5×10-3 М

157 9.81
167 1.93
177 0.47

Бензофенон

+

нафталин

н.-гексан

СБ = 10-2 М

СН = 3.5×10-3 М

161 4.65
168 1.87
н.-октан

СБ = 5×10-3 М

СН = 5×10-3 М

161 7.41
166 3.54
н.-декан

СБ = 5×10-3 М

СН = 5×10-3 М

166 1.12
172 0.56

В 4.2 было показано, что изменение концентрации триплетных молекул акцептора в процессе отжига сопровождается практически неизменной относительной заселённостью триплетного уровня - . Основываясь на выражении (42) было сделано заключение, что изменение DnT(t) происходит за счёт снятия концентрационного тушения. Поэтому аналогичный (46) закон характеризует и рост числа мономерных молекул акцептора, участвующих в переносе энергии.

 Таким образом, для прироста в процессе отжига общего числа молекул акцептора, участвующих в переносе энергии можно записать:

Dn(t) = Dn(¥){1-exp(-t/t)}. (47)

Величина, обратная t, характеризует скорость прироста при данной температуре концентрации триплетных молекул акцептора энергии, q = 1/t , и называется константой скорости процесса [161].

Итак, прирост в результате отжига образца числа молекул, участвующих в излучении сенсибилизированной фосфоресценции происходит по экспоненциальному закону. Константа скорости этого процесса зависит от температуры. В дальнейшем необходимо было определить характер зависимости константы скорости указанного выше процесса от температуры.


Информация о работе «Влияние температуры на концентрацию триплетных молекул в твердых растворах при сенсибилизированном возбуждении»
Раздел: Физика
Количество знаков с пробелами: 218705
Количество таблиц: 14
Количество изображений: 26

Похожие работы

Скачать
107365
9
6

... основном состоянии на вероятность излучательной дезактивации энергии триплетного возбуждения в акцепторе показали следующее. Такое взаимодействие увеличивает вероятность дезактивации триплетных молекул акцептора в системах для которых. При этом константа скорости излучательного перехода экспоненциально увеличивается с уменьшением среднего расстояния между компонентами донорно-акцепторной смеси. ...

Скачать
77943
2
4

... между молекулами были установлены В.Л Ермолаевым при изучении данного явления для органических соединений в твердых растворах. Эти закономерности были выявлены на основании изучения влияния акцептора на параметры фосфоресценции донора и особенностей сенсибилизированной фосфоресценции. При экспериментальном изучении явления сенсибилизированной фосфоресценции донорно-акцепторные пары обычно ...

Скачать
99713
4
19

... , что опасность тушения веществами, которая появляется в методе внутреннего стандарта сильно переоценивается Персоновым и Теплицкой. Из всего вышесказанного ясно, что методы спектрального анализа нашли самое широкое применение и в медицине и в нефтеперерабатывающей промышленности и в фундаментальных исследованиях. Поэтому важную роль при использовании спектров органических соединений играет их ...

Скачать
89044
1
4

... : ,(2.8) где фотопроводимость; — константа для данного образца;  — термическая энергия активации проводимости (обычно 0,1—0,3 эв). Знак световых носителей тока у большинства органических полупроводников дырочный. Некоторые адсорбированные пары и газы существенно изменяют фотоэлектрическую чувствительность органических полупроводников. Зависимость фототока от освещенности выражается ...

0 комментариев


Наверх