Асимптоты (определение, виды, правила нахождения)

6413
знаков
0
таблиц
8
изображений

МОСКОВСКИЙ ИНСТИТУТ ЭКОНОМИКИ,

МЕНЕДЖМЕНТА И ПРАВА


РЕФЕРАТ


по дисциплине: Высшая математика

на тему: Асимптоты (определение, виды, правила нахождения)


Выполнила: студентка 1 курса

Экономического факультета

(вечернее отделение)

Козлова М.А.

Проверил: Рошаль А.С.


Москва 2002 год

 

2

Содержание  Введение 3

2. Нахождение асимптоты 4

2.1 Геометрический смысл асимптоты 5

2.2 Общий метод нахождения асимптоты 6

3. Виды 8

3.1 Горизонтальная асимптота 8

3.2 Вертикальная асимптота 9

3.3 Наклонная асимптота  10

Использованная литература 12

3

Введение

Асимптота, так называемая прямая или кривая линия, которая, будучи продолжена, приближается к другой кривой, но никогда не пересекает ее, так что расстояние между ними делается бесконечно малой величиной.

Понятие асимптоты играет важную роль в математическом анализе. Они проводятся при изучении свойств многих кривых (гиперболы, конхоиды, логарифмич. линии, циссоиды и др.).

4

2. Нахождение асимптоты

Пусть функция f (x) определена для всех x > а (соответственно для всех

x < а). Если существуют такие числа k и l, что f(x) - kx - l = 0 при х ® + ¥ (соответственно при х ® - ¥), то прямая

y = kx + l

называется асимптотой графика функции f (x) при x ® + ¥ (соответственно при х ® - ¥).

Существование асимптоты графика функции означает, что при х ® + ¥

(или х ® - ¥) функция ведёт себя «почти как линейная функция», то есть отличается от линейной функции на бесконечно малую.

x- 3x - 2

Найдём, например, асимптоту графика функции y = x +1

Разделив числитель на знаменатель по правилу деления многочленов,

2 2

получим y = x - 4 + x + 1 Так как x + 1 = 0 при х ® ± ¥, то прямая y = x-4

является асимптотой графика данной функции как при х ® + ¥,

так и при х ® - ¥.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

2.1 Геометрический смысл асимптоты

 

Рассмотрим геометрический смысл асимптоты. Пусть М = (x, f (x)) – точка графика функции f, М - проекция этой точки на ось Ох, АВ – асимптота,

q - угол между асимптотой и положительным направлением оси Ох, q ¹,

MP – перпендикуляр, опущенный из точки М на асимптоту АВ, Q – точка пересечения прямой ММ с асимптотой АВ (рис.1).

 (рис.1)

Тогда ММ = f (x), QM = kx + l, MQ = MM - QM = f (x) – (kx +l),

MP = MQ cos q. Таким образом, MP отличается от MQ лишь на не равный нулю множитель cos q, поэтому условия MQ ® 0 и MP ® 0 при х ® + ¥ (соответственно при х ® - ¥) эквивалентны, то есть lim MQ = 0,

то и lim MP = 0, и наоборот. х ® + ¥

х ® + ¥

Отсюда следует, что асимптота может быть определена как прямая, расстояние до которой от графика функции, то есть отрезок МР, стремится к нулю, когда точка М = (x, f (x)) «стремится, оставаясь на графике, в бесконечность» (при х ® + ¥ или, соответственно, х ® - ¥).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 


Информация о работе «Асимптоты (определение, виды, правила нахождения)»
Раздел: Математика
Количество знаков с пробелами: 6413
Количество таблиц: 0
Количество изображений: 8

Похожие работы

Скачать
6412
0
8

... утверждение: если существуют такие числа k и l, что выполняется условие l = lim (f (x) – kx), то прямая y = kx + l является х ® + ¥ асимптотой графика функции f (x). В самом деле, из l = lim (f (x) – kx) имеем х ® + ¥ lim [f (x) - (kx + l)] = 0, х ® + ¥ то есть прямая y ...

Скачать
38653
27
32

... устройства, которое нужно добавить к некоторой неизменяемой части системы, чтобы обеспечит требуемое качество системы в установившемся и переходном режимах. Наиболее приемлемым для решения задачи динамического синтеза является метод логарифмических амплитудных характеристик (метод ЛАХ). [1, § 12.5] Стадии синтеза по методу ЛАХ включают: 1.       построение располагаемой ЛАХ, т.е. ЛАХ исходной ...

Скачать
64225
0
236

... данным, n=20 Найти матрицу А-1, обратную к матрице А и с ее помощью решить систему А =, где , = , = . Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету МАТЕМАТИКА (углубленный курс) Билет № 12 Что называется характеристическим уравнением дифференциального уравнения II порядка с постоянными коэффициентами? По какой ...

Скачать
18636
4
6

ывают определением на «языке последовательностей». Второе определение носит название «на языке ». Кроме понятия предела функции в точке, существует также понятие предела функции при стремлении аргумента к бесконечности: число А называется пределом функции  при , если для любого числа  существует такое число d, что при всех  справедливо неравенство : . Теоремы о пределах функций являются базой для ...

0 комментариев


Наверх