5. Исследуем функцию на возрастание, убывание, локальный экстремум:'
y= 2(х + 3)(x-4)-(x + 3)2 _ 2x2 – 2x - 24 – х2 - 6х - 9 =
(х-4)2 (x-4)2
=.
Из у' = 0 следует хг — 8х — 33 = 0, откуда = 11, х2=— 3. В интервале (—∞; — 3) y'> 0, следовательно, функция возрастает в этом интервале; в (—3; 4) y'<0, т. е. функция убывает. Поэтому функция в точке х = —3 имеет локальный максимум: у( —3) = 0. В интервале (4; 11)
у' < 0, следовательно, функция убывает на этом интервале; в (11; +∞) у'>0, т. е. функции возрастает. В точке = 11 имеем локальный минимум: y(ll) =28.
6. Исследуем график функции на выпуклость, вогнутость и определим точки перегиба. Для этого найдем
=
==.
Очевидно, что в интервале (—∞; 4) y"< 0, и в этом интервале кривая выпукла; в (4; +∞)
у" > 0, т. е. в этом интервале кривая вогнута. Так как при х = 4 функция не определена, то точка перегиба отсутствует.
7. График функции изображен на рис. 0.17
ЗАДАЧА 4. Вычислить неопределенные интегралы а) – в)
а)
1.
►◄
2.
►
◄
3.
►
.◄
4.
►
.◄
б) .
Решение. Решение данной задачи на формуле интегрирования по частям:
|
В этой формуле принимаем за
По формуле находим производственную второго сомножителя :
Подставляя найденные в формулу интегрирования по частям получаем:
|
в) )
Решение. Так как корнями знаменателя является , то по формуле , знаменатель раскладываются на множители
.
Подставим дробь в виде следующей суммы:
,
и найдем коэффициенты А и В. Приведем дроби в правой равенства части к общему знаменателю:
Приравняв числители, получим
(2) .
Подставив в последнее равенство , находим, что
Подставляя в равенство (2), находим, что
Таким образом, .
Итак,
Здесь мы воспользуемся формулой (1)
|
ЗАДАЧА 5. Вычислите площадь фигуры, ограниченной графиками функций . Изобразите эту фигуру на координатной плоскости.
Решение. Графиком функции является парабола, ветви которой направлены вверх. Вычисляем производную функции и находим координаты вершины параболы С:
Рис. к задаче 5
Найдем точки пересечения графиков функции : .
Заметим, что Графиком функции является прямая, которую можно построить по двум точкам .
Пусть площадь фигуры , ограниченной графиками функций. Так как
|
Дифференциальные уравнения с разделяющимися переменными. Дифференциальное уравнение вида
(3)
где - заданные функции называются дифференциальным уравнением с разделяющимися переменными.
Для решения уравнения такого вида необходимо сделать следующее:
1). Разделить переменные, т. е. Преобразовать уравнение к виду
(4) .
2). Проинтегрировать обе части уравнения (4)
(5)
где первообразная функции первообразная функции произвольная постоянная.
3). Разрешить, если это возможно, уравнение (5) относительно y (и найти область определения решения):
4). Добавить к решению (5) все функции вида (горизонтальные прямые), где число
один из корней уравнения
Описанный метод решения можно схематично представить в виде формулы:
ЗАДАЧА 6. Найти общее решение дифференциального уравнения Построить графики двух частных решений этого уравнения.
Решение. 1). Преобразуем уравнение к виду
Равенство (у2 + х2) = С показывает, что С > 0. Положим С =∙ R2 ,где R > 0 — другая произвольная постоянная. Тогда
у2 + х2 = R2.
3). Разрешим, предыдущее уравнение относительно у и найдём область определения решения:
Рис. к задаче 6.
D(у) =>0. Графики решений — дуги концентрических окружностей произвольного радиуса с центром в начале координат (см. рис.).
4). В данном случае, уравнение не имеет решений. Поэтому решений вида
y = а нет.
|
Линейные дифференциальные уравнение второго порядка с постоянными коэффициентами. Уравнение вида
(7) у" + by' + су=0,
где b и с — некоторые числа, называется линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами. Общее решение этого уравнения в зависимости от знака дискриминанта
характеристического уравнения
. (8) k2 + bk + c = 0
имеют следующий вид:
A) если D > 0, где k =α, к=β — два различных действительных корня (α≠β) характеристического уравнения (8);
Б) , если D = О,
где α— единственный корень характеристического уравнения;
B) если D < О,
где
Общее решение линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами
(9)
является суммой некоторого его частного решения и общего решения
. однородного уравнения (7), т. е.
Многочлен называют характеристическим многочленом дифференциального уравнения (7).
В тех случаях, когда представляет собой многочлен, функцию
,частное решение удаётся найти подбором с помощью следующей таблицы.
1. :
корни характеристического многочлена | частное решение |
Ось абсцисс пустим вдоль оси первого конуса, ось ординат - вдоль оси второго конуса, ось аппликат - параллельно оси цилиндра, причем так, чтобы система координат была правой. Расстояние d от вершин конусов до начала координат находим с помощью Теоремы Пифагора:2 + l = + 2 = 7.7 (см) таким образом ось цилиндра описывается следующим уравнением: Вершина первого конуса имеет следующие координаты - ...
урецкий, персидский, татарский и французский языки, а также мусульманское и международное право. Целью данной работы является освещение предмета высшей математики в профессиональной деятельности военного юриста. Работа включает не только теоретические аспекты применения методов высшей математики в военной юриспруденции, но и примеры практического использования методик. 1. Характеристика ...
... f ¢(xо) = 0, >0 (<0), то точка xоявляется точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные. На отрезке [a,b] функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка [a,b]. Пример 3.22. Найти экстремумы функции f(x) ...
бнику, решения задач необходимо ответить на вопросы для самопроверки, помещенные в конце темы. В соответствии с действующим учебным планом студенты-заочники изучают курс высшей математики в течение 1 и 2 семестра и выполняют в каждом семестре по две контрольные работы. Первая и вторая контрольные работы выполняются студентами в 1 семестре после изучения тем 1-2 и 3-4 соответственно. Третья и ...
0 комментариев