2.2. Последовательность выполнения работы
Согласно номеру по списку группы выбрать из табл.2.1 значения параметров для нелинейного объекта. По формулам
в1і= в1–h(і-1) ;
в2і= в2–h(і-1) ;
для і=1,2,...5 определить значения коэффициентов, определяющих выход для пяти рассматриваемых случаев.
2. Составить и отладить программу решения системы нелинейных уравнений согласно Приложению 2.1 и для полученных в пункте 1 значений выхода найти пять наборов значений входных переменных х1 и х2 .
3. По результатам просчета на ПЭВМ получить таблицы значений входа (х1 и х2 ) при заданных значениях выхода ( в1 и в2).
4. Построить графики изменения значений х1 и х2в зависимости от значений в1 и в2. .
Таблица 2.1
Номер по списку | Задания Коэффициенты системы уравнений а1 х1+ а2 х2=в1; х1 х2=в2; а1 а2 в1 в2 h |
1 | 1 2 4 2 0.1 |
2 | 2 1 3 1 |
3 | 1 2 3 1 |
4 | 2 2 4 1 |
5 | 2 1 4 2 |
6 | 1 3 4 1 |
7 | 1 1 5 3 |
8 | 1 3 5 2 |
9 | 3 3 6 1 |
10 | 2 3 7 2 |
11 | 3 3 9 2 |
12 | 2 2 9 2 |
13 | 1 1 9 2 |
14 | 1 3 5 2 |
15 | 1 1 7 3 |
16 | 2 2 7 3 |
17 | 2 3 5 1 |
18 | 3 1 5 2 |
19 | 5 5 10 1 |
20 | 6 2 10 2 |
21 | 2 2 10 2 |
22 | 1 1 10 2 |
23 | 1 1 11 2 |
24 | 2 2 11 2 |
25 | 2 2 11 3 |
26 | 2 2 11 4 |
27 | 2 2 11 5 |
28 | 2 2 11 6 |
29 | 2 2 11 7 |
30 | 1 1 11 8 |
3. Анализ динамических объектов
Цель работы: исследовать свойства и поведение динамических объектов, описываемых системами обыкновенных нелинейных дифференциальных уравнений, используя для их решения средства пакета MathCAD.
Содержание работы:
1) изучить теоретические положения (раздел 3.1), определяющие структуру динамических объектов, их математическое описание и решение задачи анализа объектов, методы решения обыкновенных дифференциальных уравнений и систем уравнений;
2) выполнить индивидуальное задание согласно предусмотренной в разд.3.2 последовательности выполнения работы;
3) оформить описание контрольной работы согласно требованиям задания.
уле . Т.о. имеем: Минимальная энергия: Найдем управление по следующей формуле: Тогда оптимальное управление . 3.2 Оптимальная L – проблема моментов в пространстве состояний Система задана в виде: Решение ДУ имеет вид: , при имеем: . Составим моментные уравнения: Подставляя необходимые данные в выше приведенные формулы, получим следующие ...
... , Полученные данные будут составлять так называемую неизменяемую часть системы. Получим, что передаточная функция такой неизменяемой части системы имеет вид 2. Структурная схема САУ с микропроцессорным регулятором Поскольку микропроцессорный регулятор построен на базе Микро-ЭВМ и может обрабатывать сигналы только дискретной формы" а сигнал на выходе объекта Ux и регулирующий сигнал Ur - ...
... цепи W1(s) = Wp(s) представлено как параллельное соединение простейших звеньев. 2.9 Неопределенность моделей систем управления Математические модели не отражают исчерпывающим образом динамические свойства систем управления в силу идеализации и упрощений, неизбежных при моделировании, неточной реализации алгоритмов управления и изменений характеристик объектов и других элементов в ...
... , на нерегулируемые его влияние не распространяется. Учет по центрам ответственности позволяет оценить деятельность подразделения и его руководителя, обеспечивает оперативный учет, анализ и контроль, а также предоставление информации о затратах. Задачи анализа затрат на качество обусловливают введение двух отчетных форм: - сводный отчет о затратах на качество, содержащий полную информацию о ...
0 комментариев