1.5 Линейные операторы и линейные функционалы
Пусть – линейные нормированные пространства.
Определение: Линейным оператором, действующим из в , называется отображение , удовлетворяющее условию: для любых , .
Будем говорить, что в (вещественной или комплексной линейной системе) определен функционал , если каждому элементу поставлено в соответствие некоторое вещественное (комплексное) число .
Определение: Линейный оператор, действующий из Е в Е1, называется ограниченным, если он определен на всем Е и каждое ограниченное множество переводит снова в ограниченное.
Определение: Оператор А называется непрерывным в точке , если для любой последовательности выполняется условие .
Определение: Оператор А называется непрерывным, если он непрерывен в каждой точке пространства Е.
Теорема: Для того, чтобы линейный оператор был непрерывным, необходимо и достаточно, чтобы он был ограничен.
Доказательство.
1. Пусть оператор А неограничен. Тогда существует МЕ – ограниченное множество, такое, что множество АМЕ1 не ограничено. Следовательно, в Е1 найдется такая окрестность нуля V, что ни одно из множеств АМ не содержится в V. Но тогда существует такая последовательность хnM , что ни один из элементов Ахn не принадлежит V и получаем, что в Е, но не сходится к 0 в Е; это противоречит непрерывности оператора А.
2. Если оператор А не непрерывен в точке 0, то в Е1 существует такая последовательность , что Ахn не стремится к 0. При этом последовательность ограничена, а последовательность не ограничена. Итак, если оператор А не непрерывен, то А и не ограничен.
Определение: Оператор называется конечномерным, если он ограничен и переводит данное пространство в конечномерное.
Определение: Функционал называется линейным, если
Линейный функционал – это частный случай линейного оператора.
([1], стр. 217), ([1], стр. 125)
Примеры линейных функционалов:
1. Пусть – мерное арифметическое пространство с элементами и – произвольный набор из – фиксированных чисел. Тогда является линейным функционалом.
2. Пример линейного функционала в
Пусть – фиксированное целое положительное число. Для каждого из положим . Таким образом является линейным функционалом в .
... состоит из значений функции g(x) на отрезке [a,b]. Причём этот оператор имеет лишь непрерывный спектр, так как резольвента при существует, но не непрерывна. Точечного спектра оператор не имеет. Пример 3: Рассмотрим оператор дифференцирования на множестве дифференцируемых функций. А: (для краткости будем писать вместо f(x) просто f). Рассмотрим резольвенту этого оператора: , то есть мы должны ...
... : µ§. Шары такие : µ§ и µ§, причем: µ§ , µ§. µ§ µ§ Если µ§ ,то: µ§ , µ§ µ§ µ§ µ§ µ§ Теорема доказана. Единственность классического решения задачи Дирихле для уравнения Пуассона. µ§ µ§ (1) µ§ µ§ (2) µ§ - это не гарантирует существование решения. µ§ Теорема. Задача (1) (2) может иметь не более одного ...
... ;0,0(p2) = P0,0. В силу теоремы 2.8. главы I разложения I, Р1 и Р2 также определяются однозначно. § 2. Два ортопроектора в сепарабельном гильбертовом пространстве 2.1. Неприводимые *-представления *-алгебры P2 . Пусть А = Р1 - Р1┴ = 2Р1 – I и В = Р2 – Р2┴ = 2Р2 – I. Тогда А2 = I , В2 = I. Следовательно А и В самосопряженные унитарные операторы в Н. Положим U=АВ, тогда U-1=ВА и А-1UА = ...
... ;0,0(p2) = P0,0. В силу теоремы 2.8. главы I разложения I, Р1 и Р2 также определяются однозначно. § 2. Два ортопроектора в сепарабельном гильбертовом пространстве 2.1. Неприводимые *-представления *-алгебры P2 . Пусть А = Р1 - Р1┴ = 2Р1 – I и В = Р2 – Р2┴ = 2Р2 – I. Тогда А2 = I , В2 = I. Следовательно А и В самосопряженные унитарные операторы в Н. Положим U=АВ, тогда U-1=ВА и А-1UА ...
0 комментариев