2. ТЕОРЕМЫ ЛАПЛАСА И АННУЛИРОВАНИЯ

Рассмотрим еще два очень важных свойства определителей.

Введем понятия минора и алгебраического дополнения.

Минором элемента определителя называется определитель, полученный из исходного определителя вычеркиванием той строки и того столбца, которым принадлежит данный элемент. Обозначают минор элемента  через .


Пример.* = .

Тогда, например, = , = .

 

Алгебраическим дополнением элемента определителя * называется его минор , взятый со знаком . Алгебраическое дополнение будем обозначать , то есть =.

Например:

 

*= , === –,

===.

Вернемся к формуле (2). Группируя элементы и вынося за скобки общий множитель, получим:

*=() +( – ) +()=

= ּ+ּ+ּ=


= ++.

Аналогично доказываются равенства:

*=++, 1, 2, 3; (3)

*=++, 1, 2, 3.

Формулы (3) называются формулами разложения определителя по элементам i-ой строки (j-го столбца), или формулами Лапласа для определителя третьего порядка.

Таким образом, мы получаем восьмое свойство определителя:

Теорема Лапласа. Определитель равен сумме всех произведений элементов какой-либо строки (столбца) на соответствующие алгебраические дополнения элементов этой строки (столбца).

Заметим, что данное свойство определителя есть не что иное, как определение определителя любого порядка. На практике его используют для вычисления определителя любого порядка. Как правило, прежде чем вычислять определитель, используя свойства 1 – 7, добиваются того, если это возможно, чтобы в какой-либо строке (столбце) были равны нулю все элементы, кроме одного, а затем раскладывают по элементам строки (столбца).

Пример. Вычислить определитель

*== (из второй строки вычтем первую) =

== (из третьей строки вычтем первую)=

== (разложим определитель по элементам третьей

строки) = 1ּ = (из второго столбца вычтем первый столбец) =  = 1998ּ0 – 1ּ2 = –2.

 

Пример.

Рассмотрим определитель четвертого порядка. Для его вычисления воспользуемся теоремой Лапласа, то есть разложением по элементам строки (столбца).

*== (так как второй столбец содержит три нулевых элемента, то разложим определитель по элементам второго столбца)= =3ּ= (из второй строки вычтем первую, умноженную на 3, а из третьей строки вычтем первую, умноженную на 2) =

= 3ּ= (разложим определитель по элементам первого столбца) = 3ּ1ּ =

 

Девятое свойство определителя носит название теорема аннулирования:

сумма всех произведений элементов одной строки (столбца) определителя на соответствующие алгебраические дополнения элементов другой строки (столбца) равна нулю, то есть

 

++ = 0,

 

Пример.

*= = (разложим по элементам третьей строки)=

= 0ּ+0ּ+ּ = –2.

Но, для этого же примера: 0ּ+0ּ+1ּ=

= 0ּ +0ּ+1ּ = 0.

Если определитель любого порядка имеет треугольный вид

*=, то он равен произведению элементов, стоящих на диагонали:

*=ּּ … ּ. (4)


Пример. Вычислить определитель.

*=

Иногда при вычислении определителя с помощью элементарных преобразований удается свести его к треугольному виду, после чего применяется формула (4).

Что касается определителя произведения двух квадратных матриц, то он равен произведению определителей этих квадратных матриц: .


ЛЕКЦИЯ 3. ОБРАТНАЯ МАТРИЦА

 

План

 

1.   Понятие обратной матрицы. Единственность обратной матрицы.

2.   Алгоритм построения обратной матрицы.

Свойства обратной матрицы.

Ключевые понятия

Обратная матрица.

Присоединенная матрица.

1.         ПОНЯТИЕ ОБРАТНОЙ МАТРИЦЫ.

ЕДИНСТВЕННОСТЬ ОБРАТНОЙ МАТРИЦЫ

В теории чисел наряду с числом  определяют число, противоположное ему () такое, что , и число, обратное ему  такое, что . Например, для числа 5 противоположным будет число

(– 5), а обратным будет число . Аналогично, в теории матриц мы уже ввели понятие противоположной матрицы, ее обозначение (– А). Обратной матрицей для квадратной матрицы А порядка n называется матрица , если выполняются равенства

, (1)

где Е – единичная матрица порядка n.

Сразу же отметим, что обратная матрица существует только для квадратных невырожденных матриц.

Квадратная матрица называется невырожденной (неособенной), если det A ≠ 0. Если же det A = 0, то матрица А называется вырожденной (особенной).

Отметим, что невырожденная матрица А имеет единственную обратную матрицу . Докажем это утверждение.

Пусть для матрицы А существует две обратные матрицы ,, то есть

 и .

Тогда =ּ=ּ() =

= (ּ) ===.

Что и требовалось доказать.

Найдем определитель обратной матрицы. Так как определитель произведения двух матриц А и В одинакового порядка равен произведению определителей этих матриц, т. е. , следовательно, произведение двух невырожденных матриц АВ есть невырожденная матрица.

=1  .

Делаем вывод, что определитель обратной матрицы есть число, обратное определителю исходной матрицы.



Информация о работе «Матрицы и определители»
Раздел: Математика
Количество знаков с пробелами: 21463
Количество таблиц: 0
Количество изображений: 16

Похожие работы

Скачать
14817
0
1

... элементов, стоящих на его главной и побочной диагоналях . Определитель третьего и любого другого порядка находится примерно также, а именно: Допустим, что у нас есть квадратная матрица . Определителем следующей матрицы является такое выражение : a11a22a33 + a12a23a31 + a13a21a32 – a11a23a32 – a12a21a33 – a13a22a31.. Как вы видите он просчитывается довольно легко, если запомнить определенную ...

Скачать
49202
0
15

... равен произведению определителй множителей. Это следует из Теоремы при Заключение В данной работе рассмотрена основная теория матриц и доказательство теоремы Коши-Бине. Также представлено применение данной теоремы при нахождении определителя произведения двух прямоугольных матриц в программе написанной на языке программирования Дельфи с возможностью ввода матриц вручную и подгрузкой из файла. ...

Скачать
48054
1
6

... генерируемой матрицы, то получившийся в результате разности размерностей массива и матрицы хвост перемножается с первыми элементами вспомогательного массива. 5.         Организовать цикл для генерации матрицы, в которой получившийся массив в пункте 4 располагается на главной диагонали, и одна из областей, находящихся выше или ниже главной диагонали, заполняется случайными числами, принадлежащими ...

Скачать
25275
6
4

... получения количества обратимых матриц порядка n над полем Zp выглядит так: Данную формулу тождественными преобразованиями можно привести к виду:   §3. Обратимые матрицы над кольцом Zn  Из теоремы доказанной в § 1 следует, что для определителей матриц A и B выполняется равенство |A·B|=|A|·|B|. Для обратимых матриц A и B следует A·B=E.Следовательно |A·B|=|A|·|B|=|E|=1. Таким образом, ...

0 комментариев


Наверх