3. Компланарність векторів
Означення. Три ненульових вектори називаються компланарними
якщо відповідні їм напрямлені відрізки паралельні одній площині або лежать в одній площині.
Очевидно, що коли компланарні вектори ,, відкласти від довільної точки O (=, =,=), то точки О, А, В, С лежатимуть в одній площині (мал. 14).
Отже, якщо вектори компланарні, то існують такі їх представники, які лежать в одній площині.
Очевидно, що якщо серед трьох векторів є два колінеарних, то ці вектори компанарні. І навпаки, якщо три вектори некомпланарні, то серед них немає колінеарних.
Теорема 1. (про розклад вектора за двома не колінеарними векторами). Якщо вектори ,, компланарні, а вектори , неколінеарні, то існують єдині числа α, β такі, що: = α + β. /2/
Інакше кажучи, вектор можна розкласти за векторами і і до того ж єдиним способом.
Доведення. Доведемо спочатку існування чисел α і β, що задовольняють рівність /2/. Відкладемо від деякої точки O вектори =, =, =. Оскільки ці вектори компланарні, то точки О, А, В, С лежать в одній площині. Вектори і неколінеарні, тому O, A, B не лежать на одній прямій.
Можливі два випадки:
1. Точка С належить прямій ОВ (мал. 15a). Тоді вектори і колінеарні і, отже, за попередньою теоремою, = β, де β – деяке число. Отже, =0*+ β, тобто має місце розклад /2/.
2. С (ОВ). Проведемо || OB (мал. 15b). Тоді за правилом трикутника =+. Але ця рівність можлива тільки тоді, коли α =, β =. Дійсно, якби, наприклад, α , то було б, ||, що суперечить умові теореми. Отже, припущення неправильне. Тому існує єдиний розклад вектора за векторами і . Теорему доведено.
Теорема 2. (про розклад вектора за трьома некомпланарними векторами). Якщо вектори , , некомпланарні, то для будь-якого вектора , існують і притому єдині числа α, β, γ такі, що = α+β+γ .
Лінійна залежність векторів
Означення. Система векторів називається лінійно залежною, якщо існують такі числа , ,…, серед яких хоча б одне відмінне від нуля, що ++ … += 0. / 4/
Якщо ж рівність /4/ справджується тільки при ==…== 0, то дана система векторів називається лінійно незалежною.
Сума ++ … + називається лінійною комбінацією векторів .
Розглянемо деякі властивості лінійної залежності векторів, які будуть потрібні надалі.
Властивість 1. Система векторів лінійно залежна тоді і тільки тоді, коли хоча б один з векторів є лінійною комбінацією інших векторів цієї системи.
Доведення.
1. Необхідність. Нехай система векторів лінійно залежна. Тоді існують такі числа , ,…, , що ++ … += 0 /5/
При цьому принаймні одне з чисел , ,…, не дорівнює нулю. Нехай, наприклад, 0. Тоді з рівності /5/ дістанемо:
= – – – – – .
Отже, вектор є лінійною комбінацією векторів , ,…, ,…, .
3. Достатність. Нехай у даній системі векторів вектор є лінійною комбінацією інших векторів:
=++ … +++ … +.
Цю рівність можна записати так:
++ … + + (-1) ++ … += 0.
У цій рівності коефіцієнт біля відмінний від нуля, тому дана система векторів лінійно залежна.
Властивість 2. Якщо частина даної системи векторів лінійно залежна, то і вся система векторів лінійно залежна.
Властивість 3. Якщо система векторів лінійно незалежна, то будь-яка її частина також лінійно незалежна.
Ця властивість безпосередньо випливає із властивості 2, бо якби деяка частина даної системи векторів була лінійно залежною, то і вся система була б лінійно залежною.
Властивість 4. Система лінійно незалежних векторів не містить нульового вектора.
Якщо в деякій системі векторів є нульовий вектор: , , то
виконується рівність 1* + 0* +… + 0* =0. 10, тому така система є лінійно залежною, а, отже, система лінійно незалежних векторів не може містити нульового вектора.
Для системи двох і трьох векторів поняття лінійної залежності тісно пов'язане з колінеарністю і компланарністю векторів. Справедливі такі теореми.
Теорема 1. Два вектори і лінійно залежні тоді і тільки тоді, коли вони колінеарні.
Доведення.
1. Необхідність. Нехай система векторів , лінійно залежна. Тоді за
властивістю 1 один із векторів лінійно виражається через другий: = α,
звідки випливає, що вектори і колінеарні.
2. Достатність. Нехай вектори і колінеарні. Тоді існує таке число α, що = α . Із властивості 1 випливає, що вектори і лінійно залежні. Теорему доведено.
Теорема 2. Система трьох векторів , , лінійно залежна тоді і тільки тоді, коли ці вектори компланарні.
Доведення.
1. Необхідність. Нехай система векторів , , лінійно залежна. Тоді за властивістю 1 один із векторів є лінійною комбінацією інших векторів. Нехай, наприклад, = α+β. Із означення суми векторів випливає, що вектори , α, β компланарні, а тоді і вектори , , будуть компланарними, бо || α, || β.
2. Достатність. Нехай вектори , , компланарні. Якщо ||, то за попередньою теоремою вектори , лінійно залежні, а за властивістю 2 лінійно залежними будуть і вектори , , . Якщо ж не ||, то за теоремою про розклад вектора за двома не колінеарними векторами = α+β. То за властивістю 1 система векторів , , лінійно залежна. Теорему доведено
... особливих властивостей, що відбивають реальну природу інформаційного джерела. У даному розділі мова йтиме про застосування контекстно-контекстно-залежного імовірнісного моделювання в методах ощадливого кодування відеоінформації. У рамках контекстно-контекстно-залежного моделювання специфічні особливості відеоданих є основою для виробітку критеріїв формування факторних векторів і розбивки їхньої ...
... ів у буферний ЗП контролера клавіатури та дисплея. Але під час виконання роботи був знайдений більш ефективний метод для аналізу пульсової хвилі – вейвлет-аналіз, якому і присвячений наступний розділ. 3. СУТНІСТЬ ВЕЙВЛЕТ-АНАЛІЗУ Вейвлет-перетвореня сигналів є узагальненням спектрального аналізу, типовий представник якого - класичне перетворення Фур'є. Застосовувані для цієї мети базиси ...
... може бути компетентною або некомпетентною в певних питаннях, тобто мати компетентність (компетентності) у певній галузі діяльності. Саме тому, одним із результатів навчання курсу «Застосування ІКТ у навчальному процесі з математики» вбачається формування в майбутніх вчителів відповідних ключових фахових компетентностей. Зазначене вище наштовхнуло на дослідження компетентностей: внаслідок чого ...
... активно досліджуваних областей і серед представників університетської науки. За останні роки було розроблено кілька альтернативних методик виміру ризику в корпораціях, серед них слід зазначити методики, засновані на застосуванні регресійного аналізу. На сьогодні у світі для хеджування валютного ризику нефінансові корпорації найчастіше використовують такий вид валютних деривативів, як форвардні ...
0 комментариев