1.2 Непозиционные и позиционные системы счисления

Система счисления (Нумерация) - это способ представления числа символами некоторого алфавита, которые называются цифрами.

Путем длительного развития человечество пришло к двум видам систем счисления: позиционной и не позиционной.

1.2.1 Непозиционная система счисления

В самой древней нумерации употреблялся лишь знак "|" для единицы, и каждое натуральное число записывалось повторением символа единицы столько раз, сколько единиц содержится в этом числе. Сложение в такой нумерации сводилось к приписыванию единиц, а вычитание - к их вычеркиванию. Для изображения сколько – нибуть больших чисел этот способ нумерации непригоден из - за своей громоздкости.

При начальном обучении в школе, когда счет ведется в пределах одного - двух десятков, этот способ нумерации успешно применяется (счет на палочках).

В непозиционных системах счисления смысл каждого знака сохраняется и не зависит от его места в записи числа.

К более современным непозиционным системам относят египетскую иероглифическую систему нумерации, в которой имелись определенные знаки для чисел: единица - I, десять - n, сто - ρ и так далее; эти числа называются узловыми. Все остальные натуральные числа, называемые алгоритмическими числами, записываются единообразно при помощи единственной арифметической операции - сложения. Например ,число 243 запишется в виде ρρ nnnn III, 301 - в виде ρρρ I.

К непозиционным системам относят римскую нумерацию. За узловые числа в этой системе принимают числа: единица - I, пять - V, десять - X, пятьдесят - L, сто - С, пятьсот - D, тысяча - М. Все алгоритмические числа получаются при помощи двух арифметических операций: сложения и вычитания. Вычитание производится тогда, когда знак, соответствующий меньшему узловому числу, стоит перед знаком большего узлового числа, например, VI - шесть (5+1= 6), ХС – девяносто(100-10=90), 1704 - МОССIV, 193 -СХСШ, 687 - DCLXXXII.

В римской нумерации заметны следы пятеричной системы счисления, так как в ней имеются специальные знаки для чисел 5, 50 и 500.

При записи чисел использовался не только принцип сложения, но и принцип умножения.

Например, в старо — китайской системе счисления числа 20 и 30 изображались схематически, как 2,10 и 3,10. числа 10, 100, 1000 имели определенные специальные обозначения. Число 528 записывалось так: 5,100,2,10,8.

Наиболее удобными среди непозиционных систем счисления являются алфавитные системы нумерации. Примерами таких систем могут служить ионийская система (Древняя Греция), славянская, еврейская, грузинская и армянская.

Во всех алфавитных системах существенным является обозначение специальными символами - буквами в алфавитном порядке всех чисел от 1 до 9, всех десятков от 10 до 90 и всех сотен от 100 до 900. Чтобы отличать запись чисел от слов над буквами, обозначающими цифры, в греческой и славянской нумерации ставилась черта.

В греческой системе счисления число 543 записывалось: φμγ (φ - 500,  μ- 40, γ- 3). В римской системе счисления это число записывается в виде DXLIII, в египетской иероглифической - в виде ρρρρρ nnn III.

Из этого примера видно преимущество алфавитной нумерации, в которой используется цифровой принцип обозначения единиц, десятков, сотен.

В записи больших чисел в алфавитной системе уже виден переход к позиционной системе записи. Например, 32543 записывалось так


Наиболее удобными системами счисления оказались позиционные или поместные системы.


 

1.2.2 Позиционные системы счисления

Позиционная система счисления - это совокупность определений и правил, позволяющих записывать любое натуральное число с помощью некоторых значков или символов, каждый из которых имеет определенный смысл в зависимости от его места в записи числа (от его позиции). Чаще всего применяют позиционную систему счисления с фиксированным основанием. Основанием системы может быть любое натуральное число ρ, ρ>1

Систематической записью натурального числа N по основанию ρ называют представление этого числа в виде суммы:

N = аnρn+...+а1ρ, + а0

где аn, ..., а1, а0 - числа принимающие значения 0, 1, ..., ρ - 1, причем, аn≠0.

Позиционная система счисления с основанием ρ называется ρ — ичной (двоичной, троичной и так далее). На практике чаще всего применяется десятичная ρ= 10).

Для обозначения чисел 0, 1, ..., ρ - 1 в ρ - ичной системе счисления используют особые знаки, называемые цифрами. Древнеиндийские математики открыли нуль - особый знак, который должен был показать отсутствие единиц определенного разряда.

Для ρ - ичной системы счисления нужно ρ цифр. Если ρ < 10, то применяются те же обозначения цифр, что и в десятичной системе счисления (только берутся цифры, меньше основания системы).

В системах с основанием ρ > 10 для чисел, больших или равных 10, не вводят специальных символов, а используют десятичную запись этих чисел, заключая эту запись в скобки. Например, в четырнадцатеричной системе имеется четырнадцать цифр: 0, 1, 2, 3 ... 9, (10), (11), (12), (13).

В системе счисления с основанием ρ, так же как и в десятичной системе счисления, место, занимаемое цифрой, считая, справа налево, называется разрядом.

Число N= аnρ n+ . . . +a1ρ +а0 содержит а0 единиц первого разряда, а1 единиц второго разряда, а2 единиц третьего разряда и так далее. Единица следующего разряда в ρ раз больше единицы предыдущего разряда.

Позиционные системы счисления удовлетворяют требованию возможности и однозначности записи любого натурального числа.

Теорема.  Любое натуральное число N может быть записано в системе с основание ρ и притом единственным образом.

Доказательство:


Информация о работе «Системы счисления и основы двоичных кодировок»
Раздел: Математика
Количество знаков с пробелами: 54749
Количество таблиц: 16
Количество изображений: 10

Похожие работы

Скачать
448518
14
55

... также невысока и обычно составляет около 100 кбайт/с. НКМЛ могут использовать локальные интерфейсы SCSI. Лекция 3. Программное обеспечение ПЭВМ 3.1 Общая характеристика и состав программного обеспечения 3.1.1 Состав и назначение программного обеспечения Процесс взаимодействия человека с компьютером организуется устройством управления в соответствии с той программой, которую пользователь ...

Скачать
91958
12
0

... . В случае выбора пункта «выход», необходимо реализовать завершение работы программы и передачу управления операционной системе DOS. 1.3. Требования техническим и программным средствам Программа выполнена на языке ассемблера 8086 процессора, соответственно ей необходим IBM PC – совместимый компьютер с процессором не ниже 8086, также программа может выполняться на компьютерах с ...

Скачать
177159
29
21

... в широкую практику разработки программ объектно-ориентированного программирования, впитавшего в себя идеи структурного и модульного программирования, структурное программирование стало фактом истории информатики. Билет № 9 Текстовый редактор, назначение и основные функции. Для работы с текстами на компьютере используются программные средства, называемые текстовыми редакторами или текстовыми ...

Скачать
46487
9
40

... можно изобразить отдельно. Формирователь выхода «Равенство кодов» Формирователь выхода «Больше» Формирователь выхода «Меньше». Арифметические устройства Другой класс приборов, используемых в дискретной технике предназначен для выполнения арифметических действий с двоичными числами: сложения, вычитания, умножения, деления. К арифметическим устройствам относятся также схемы, ...

0 комментариев


Наверх