Высшая математика
Функции нескольких переменных
Содержание
1. Понятие функции двух и более переменных
2. Предел и непрерывность функции двух переменных
3. Частные производные первого порядка. Полный дифференциал
4. Частные производные высших порядков
5. Экстремум функции нескольких переменных. Необходимые и достаточные условия существования экстремума
6. Условный экстремум
Литература
1. Понятие функции двух и более переменных
Многие явления, происходящие в природе, экономике, общественной жизни нельзя описать с помощью функции одной переменной. Например, рентабельность предприятия зависит от прибыли, основных и оборотных фондов. Для изучения такого рода зависимостей и вводится понятие функции нескольких переменных.
В данной лекции рассматриваются функции двух переменных, так как все основные понятия и теоремы, сформулированные для функций двух переменных, легко обобщаются на случай большего числа переменных.
Пусть – множество упорядоченных пар действительных чисел .
Определение 1. Если каждой упорядоченной паре чисел по некоторому закону поставлено в соответствие единственное действительное число , то говорят, что задана функция двух переменных или . Числа называются при этом независимыми переменными или аргументами функции, а число – зависимой переменной.
Например, формула , выражающая объем цилиндра, является функцией двух переменных: – радиуса основания и – высоты.
Пару чисел иногда называют точкой , а функцию двух переменных – функцией точки .
Значение функции в точке обозначают или и называют частным значением функции двух переменных.
Совокупность всех точек , в которых определена функция , называется областью определения этой функции. Для функции двух переменных область определения представляет собой всю координатную плоскость или ее часть, ограниченную одной или несколькими линиями.
Например, область определения функции – вся плоскость, а функции – единичный круг с центром в начале координат ( или .
2. Предел и непрерывность функции двух переменных
Понятия предела и непрерывности функции двух переменных аналогичны случаю одной переменной.
Пусть – произвольная точка плоскости. – окрестностью точки называется множество всех точек , координаты которых удовлетворяют неравенству . Другими словами, – окрестность точки – это все внутренние точки круга с центром в точке и радиусом .
Определение 2. Число называется пределом функции при (или в точке ), если для любого сколь угодно малого положительного числа существует (зависящее от ) такое, что для всех и удовлетворяющих неравенству выполняется неравенство .
Обозначается предел следующим образом:
или .
Пример 1. Найти предел .
Решение. Введем обозначение , откуда . При имеем, что . Тогда
.
Определение 3. Функция называется непрерывной в точке , если: 1) определена в точке и ее окрестности; 2) имеет конечный предел ; 3) этот предел равен значению функции в точке , т.е. .
Функция называется непрерывной в некоторой области, если она непрерывна в каждой точке этой области.
Точки, в которых условие непрерывности не выполняется, называются точками разрыва этой функции. В некоторых функциях точки разрыва образуют целые линии разрыва. Например, функция имеет две линии разрыва: ось () и ось ().
Пример 2. Найти точки разрыва функции .
Решение. Данная функция не определена в тех точках, в которых знаменатель обращается в нуль, т. е. в точках, где или . Это окружность с центром в начале координат и радиусом . Значит, линией разрыва исходной функции будет окружность .
... и градиент функции вычисляется в меньшем числе точек. Описание программы Программа предназначена для нахождения точек минимума функций нескольких переменных – другими словами для минимизации этих функций. В программе реализован один из методов спуска – Градиентный метод спуска с выбором шага. Начальный шаг задается. Изменение шага осуществляется по схеме если ; если Вычисление ...
... предел функции: Решение. Воспользуемся первым замечательным пределом Тогда Пример 3. Найти предел функции: Решение. Воспользуемся вторым замечательным пределом Тогда Непрерывность функции нескольких переменных По определению функция f (x, y) непрерывна в точке (х0, у0), если она определена в некоторой ее окрестности, в том числе в самой точке (х0, у0) и если предел f (x, y) в этой ...
... (x, y) выполняется неравенство: . При этом, т. е. приращение функции > 0. Определение 3: Точки локальных минимума и максимума называются точками экстремума. Условные Экстремумы При отыскании экстремумов функции многих переменных часто возникают задачи, связанные с так называемым условным экстремумом. Это понятие можно разъяснить на примере функции двух переменных. Пусть заданы функция ...
... векторы в силу (6.8) оказались бы линейно зависимыми .Разделив обе части на 0 получим равенство вида (6.9). ч.т.д. Пример №5. Пусть требуется найти экстремум функции u=xyzt при условии x+y+z+t=4c; область изменения переменных определяетссся неравенствовами x>0, y>0, t>0, z>0. Применяя к этой задаче метод Лагранжа, введем вспомогательную ...
0 комментариев