Министерство образования и науки Российской Федерации
Вятский государственный гуманитарный университет
Математический факультет
Кафедра математического анализа и МПМ
Дипломная работа
Метризуемость топологических пространств
Выполнила
студентка 5 курса
математического факультета
Побединская Татьяна Викторовна
_______________________________
(подпись)
Научный руководитель
к.ф.-м.н., доцент кафедры математического анализа и МПМ Варанкина Вера Ивановна
_______________________________
(подпись)
Рецензент
_______________________________
(подпись)
Допущена к защите в ГАК
Зав. кафедрой______________________________к.п.н., доцент Крутихина М.В.
(подпись)
«_____» _______________2004 г.
Декан факультета_________________________к.ф.-м.н., доцент Варанкина В.И.
(подпись)
«_____» _______________2004 г.
КИРОВ
2004
Содержание
Введение. 3
Глава I. Основные понятия и теоремы.. 4
Глава II. Свойства метризуемых пространств. 10
Глава III. Примеры метризуемых и неметризуемых пространств. 21
Библиографический список. 24
Введение
Тема дипломной работы – «Метризуемость топологических пространств».
В первой главе работы вводятся основные определения, связанные с понятиями метрического и топологического пространств.
Во второй главе рассматриваются и доказываются следующие свойства метризуемых пространств:
1. Метризуемое пространство хаусдорфово.
2. Метризуемое пространство нормально.
3. В метризуемом пространстве выполняется первая аксиома счетности.
4. Метризуемое пространство совершенно нормально.
5. Для метризуемого пространства следующие условия эквивалентны:
1) сепарабельно,
2) имеет счетную базу,
3) финально компактно.
6. Любое метризуемое топологическое пространство может быть метризовано ограниченной метрикой.
7. Произведение счетного числа метризуемых пространств метризуемо.
В третьей главе рассматриваются примеры метризуемых и неметризуемых пространств.
Глава I. Основные понятия и теоремы
Определение. Метрическим пространством называется пара , состоящая из некоторого множества (пространства) элементов (точек) и расстояния, то есть однозначной неотрицательной действительной функции , определенной для любых и из и удовлетворяющей трем условиям:
1) (аксиома тождества);
2) (аксиома симметрии);
3) (аксиома треугольника).
Определение. Пусть – некоторое множество. Топологией в называется любая система его подмножеств , удовлетворяющая двум требованиям:
1. Само множество и пустое множество принадлежат .
2. Объединение любого (конечного или бесконечного) и пересечение любого конечного числа множеств из принадлежат .
Множество с заданной в нем топологией , то есть пара , называется топологическим пространством.
Множества, принадлежащие системе , называются открытыми.
Множества , дополнительные к открытым, называются замкнутыми множествами топологического пространства .
Определение. Совокупность открытых множеств топологического пространства называется базой топологического пространства , если всякое открытое множество в может быть представлено как объединение некоторого числа множеств из .
Теорема 1. Всякая база в топологическом пространстве обладает следующими двумя свойствами:
1) любая точка содержится хотя бы в одном ;
2) если содержится в пересечении двух множеств и из , то существует такое , что .
Определение. Открытым шаром или окрестностью точки радиуса в метрическом пространстве называется совокупность точек , удовлетворяющих условию . При этом – центр шара, – радиус шара.
Утверждение 1. Для любого , принадлежащего -окрестности точки , существует окрестность радиуса , включенная в -окрестность точки .
Доказательство. Выберем в качестве :.
Достаточно доказать для произвольного импликацию . Действительно, если , то
Получаем, что , что и требовалось доказать.
Теорема 2. Совокупность всех открытых шаров образуют базу некоторой топологии.
Доказательство. Проверим свойства базы (теорема 1).
· Свойство первое очевидно, так как для любого выполняется для любого .
· Проверим второе свойство.
Пусть , и , тогда, воспользовавшись утверждением 1, найдем такое , что Теорема доказана.
Определение. Топологическое пространство метризуемо, если существует такая метрика на множестве , что порожденная этой метрикой топология совпадает с исходной топологией пространства .
Аксиомы отделимости
Аксиома . Для любых двух различных точек топологического пространства окрестность хотя бы одной из них не содержит другую.
Аксиома . Каждая из двух произвольных точек пространства имеет окрестность, не содержащую вторую точку.
Предложение. является - пространством тогда и только тогда, когда для любого множество замкнуто.
Доказательство.
Необходимость. Пусть . Так как является -пространством, то существует окрестность , не содержащая .
Рассмотрим
Докажем, что . Применим метод двойного включения:
· Очевидно, что по построению множества .
· .
Пусть отсюда для любого отличного от существует окрестность , значит , тогда .
Множество - открыто, как объединение открытых множеств.
Тогда множество - замкнуто, как дополнение открытого множества.
Достаточность. Рассмотрим . По условию замкнутые множества. Так как , то . Множество -открыто как дополнение замкнутого и не содержит . Аналогично доказывается существование окрестности точки , не содержащей точку
Что и требовалось доказать.
Аксиома ( аксиома Хаусдорфа). Любые две точки пространства имеют непересекающиеся окрестности.
Аксиома . Любая точка и не содержащее ее замкнутое множество имеют непересекающиеся окрестности.
Определение. Пространства, удовлетворяющие аксиомам () называются -пространствами (-пространства называют также хаусдорфовыми пространствами).
Определение. Пространство называется нормальным или -пространством, если оно удовлетворяет аксиоме , и всякие его два непустые непересекающиеся замкнутые множества имеют непересекающиеся окрестности.
Определение. Система окрестностей называется определяющей системой окрестностей точки , если для любой окрестности точки найдется окрестность из этой системы, содержащаяся в .
Определение. Если точка топологического пространства имеет счетную определяющую систему окрестностей, то говорят, что в этой точке выполняется первая аксиома счетности. Если это верно для каждой точки пространства, то пространство называется пространством с первой аксиомой счетности.
Определение. Две метрики и на множестве называются эквивалентными, если они порождают на нем одну и ту же топологию.
Пример. На плоскости для точек и определим расстояние тремя различными способами:
1. ,
2. ,
3. .
· Введенные расстояния являются метриками. Проверим выполнимость аксиом метрики для введенных расстояний.
1. 1)
2) так как и , то вторая аксиома очевидна:
3) рассмотрим точки ,, и докажем следующее неравенство:
Возведем это неравенство в квадрат:
.
Так как и (поскольку ) и выражение есть величина неотрицательная, то неравенство является верным.
2. 1)
2) так как и , то вторая аксиома очевидна: .
3) рассмотрим точки ,, и докажем следующее неравенство: .
Тогда и .
3. 1)
2) так как и , то вторая аксиома очевидна:
.
3) рассмотрим точки ,,.
Неравенство: - очевидно.
· Введенные метрики и эквивалентны, то есть задают одну и ту же топологию.
Пусть метрика порождает топологию , - топологию и - топологию . Достаточно показать два равенства.
Покажем, что .
Рассмотрим множество, открытое в и покажем, что открыто в . Возьмем некоторую точку и изобразим шар с центром в этой точке, который целиком лежит в . Шар в - квадрат, шар в - круг. А квадрат всегда можно заключить в круг. Тогда открыто и в .
Аналогично доказывается, что . А тогда и .
Глава II. Свойства метризуемых пространств
Свойство 1. Метризуемое пространство хаусдорфово.
Доказательство. Пусть . Возьмем . Докажем, что .
Предположим, что , тогда существует , т.е. и . Тогда, . Получили противоречие. Следовательно, .
Следствие. Метризуемое пространство является - пространством.
Определение. Расстоянием от точки до множества в метрическом пространстве называется .
Утверждение 2. Пусть множество фиксировано; тогда функция , сопоставляющая каждой точке расстояние , непрерывна на пространстве .
Доказательство. Воспользуемся определением непрерывности: функция называется непрерывной в точке , если .
Из неравенства , где , получаем . Аналогично . Из полученных неравенств следует .
Для произвольного возьмем . Тогда из неравенства следует . Непрерывность доказана.
Лемма. – замкнутое множество в метрическом пространстве . Для любого расстояние от до множества положительно.
Доказательство.
Множество замкнуто, отсюда следует, что множество - открыто. Так как точка принадлежит открытому множеству , то существует такое, что . Так как , то для некоторого . Поэтому для любого . Следовательно, , что и требовалось доказать.
Свойство 2. Метризуемое пространство нормально.
Доказательство. По доказанному метризуемое пространство является
-пространством. Остается доказать, что любые непустые непересекающиеся замкнутые множества и имеют непересекающиеся окрестности.
Так как и множество замкнуто по условию, то для любого по лемме .
Обозначим и для произвольных и .
Множества и открыты как объединения открытых шаров в и содержат соответственно множества и .
Следовательно, - окрестность множества , - окрестность множества .
Докажем, что .
Предположим, что , то есть . Тогда из условия следует, что для некоторого . Отсюда .
Аналогично получаем для некоторого . Для определенности пусть . Тогда .
Получаем , для некоторой точки , что невозможно в силу определения расстояния от точки до множества.
Следовательно . Таким образом, является -пространством, а, значит, нормальным пространством. Теорема доказана.
Свойство 3. В метризуемом пространстве выполняется первая аксиома счетности.
Доказательство. Пусть - произвольное открытое множество, содержащее точку . Так как открытые шары образуют базу топологии метрического пространства, то содержится в вместе с некоторым открытым шаром, то есть для некоторых и . По утверждению 1 найдется такое , что .
Возьмем , для которого . Тогда . Таким образом открытые шары , образуют определяющую систему окрестностей точки . Очевидно, что множество этих окрестностей счетно. Что и требовалось доказать.
Определение. Множеством типа или просто - множеством пространства называется всякое множество , являющееся объединением счетного числа замкнутых (в ) множеств.
Определение. Множеством типа или просто - множеством пространства называется всякое множество , являющееся пересечением счетного числа открытых (в ) множеств.
Очевидно, что множества типа и являются взаимно дополнительными друг для друга.
Определение. Нормальное пространство, в котором всякое замкнутое множество является множеством типа , называется совершенно нормальным.
Утверждение 3. Нормальное пространство является совершенно нормальным тогда и только тогда, когда всякое открытое множество, принадлежащее этому пространству, является множеством типа .
Свойство 4. Метризуемое пространство совершенно нормально.
Доказательство. Пусть - непустое замкнутое множество в . Тогда для непрерывной функции (непрерывность ее установлена в утверждении 2). Обозначим , множества открыты в как прообразы открытых множеств при непрерывном отображении. Докажем, что .
Пусть , тогда . Так как для любого , то для любого . Отсюда .
Обратно. Пусть , тогда для любого . Отсюда для любого , поэтому для любого , тогда , значит . Таким образом множество является множеством типа .
Определение. Множество всюду плотно в , если любое непустое открытое в множество содержит точки из .
Определение. Топологическое пространство называется сепарабельным, если оно имеет счетное всюду плотное подмножество.
Определение. Семейство γ открытых в множеств образуют покрытие пространства , если содержится в объединении множеств этого семейства.
Определение. Топологическое пространство называется финально компактным, если из любого его открытого покрытия можно выделить счетное подпокрытие.
Свойство 5. Для метризуемого пространства следующие условия эквивалентны:
1) сепарабельно,
2) имеет счетную базу,
3) финально компактно.
Доказательство.
Пусть - счетное всюду плотное множество в , - метрика в . Множество окрестностей счетно. Докажем, что - база топологии в . Пусть - произвольное открытое в множество, . Тогда для некоторого . Рассмотрим рациональное число , для которого и точку , для которой .
Докажем, что . Пусть . Так как , то . Тогда . Таким образом, для произвольного и открытого множества нашелся элемент из , такой, что . Следовательно - база топологии.
Пусть - счетная база в . Рассмотрим произвольное открытое покрытие множества , - открыты для любого (- индексное множество). Для любого существует , для которого . Так как - база, то найдется такое , что . Тогда . Поскольку база счетна, то покрывается счетным числом соответствующих множеств . Таким образом, - финально компактно.
Для каждой точки рассмотрим окрестности , которые образуют покрытие пространства . В силу финальной компактности из этого покрытия можно выделить счетное подпокрытие . В каждом из этих множеств выберем точку . Множество точек счетно, докажем, что оно плотно в . Пусть - произвольное открытое множество в , , тогда для некоторого . Существует элемент подпокрытия . Тогда , то есть любое непустое открытое множество в содержит точку этого множества. Что и требовалось доказать.
Определение. Диаметром непустого множества в метрическом пространстве называется точная верхняя грань множества всех расстояний между точками множества и обозначается .
.
Если , то множество называют неограниченным.
Определение. Метрика метрического пространства называется ограниченной, если .
Свойство 6. Любое метризуемое топологическое пространство может быть метризовано ограниченной метрикой.
Доказательство. Пусть метрика порождает топологию топологического пространства . Положим для любых .
Докажем следующее:
1. -метрика на ;
2. метрики и эквивалентны;
3. .
... , СССР; Том, С. П. Новиков) и теория сглаживания и триангулируемости (Дж. Милнор, США). Развитие Т. продолжается во всех направлениях, а сфера её приложений непрерывно расширяется. Определение топологического пространства Напомним классическое определение непрерывности числовой функции f в точке x, восходящее к Коши. Определение 1. Функция f называется непрерывной в точке x, если для любого e ...
... называется нормальным, или Т4-пространством, если для каждой пары непересекающихся замкнутых множеств А и В существуют непересекающиеся открытые множества U и V такие, что АU, BV. ГЛАВА 2. Линейно упорядоченное пространство ординальных чисел. §1.ВПОЛНЕ УПОРЯДОЧЕННЫЕ МНОЖЕСТВА И ИХ СВОЙСТВА. Рассмотрим вполне упорядоченные множества и их свойства. Предложение 1.1. Всякое ...
... T, - Объединение произвольного семейства множеств, принадлежащих T, принадлежит T, - Пересечение двух множеств, принадлежащих T, принадлежит T. Множество X вместе с заданной на нем топологией T называется топологическим пространством. Подмножества X, принадлежащие T, называются открытыми множествами. Потребность в развитии общего подхода к понятию пространства возникла довольно давно – ...
ного сложения и умножения вектора на скаляр, такими, что это множество является группой по векторному сложению и справедливы законы ассоциативности и дистрибутивности для умножения на скаляр. Выпуклым подмножеством Е векторного пр-ва Х называется такое его подмножество, что для любых его двух элементов х и у и числа q из [0, 1] элемент qх+(1-q)у принадлежит Е. Уравновешенным подмножеством Е ...
0 комментариев