1. Дискретное топологическое пространство.
- произвольное непустое множество. Открытым назовем любое подмножество в . Очевидно, при этом выполнены все аксиомы топологического пространства. Рассмотрим Для любого множество открыто, так как . Следовательно, открыто и любое подмножество в как объединение одноэлементных множеств. Вывод: дискретное топологическое пространство – метризуемо.
2. Двоеточия.
. Рассмотрим топологии на .
1) - простое двоеточие.
2) - связное двоеточие.
3) - слипшееся двоеточие.
- метризуемо, так как топология - дискретная.
, - неметризуемы, так как не являются хаусдорфовыми.
3. Стрелка ().
В открытыми назовем и множества вида , где . Очевидно, при этом выполнены все аксиомы топологического пространства. Топологическое пространство не является хаусдорфовым, а значит неметризуемо.
4. Окружности Александрова (пространство ).
Открытые множества в :
первого рода: интервал на малой окружности плюс его проекция на большую окружность , из которой выброшено конечное число точек.
второго рода: каждая точка на большой окружности открыта.
1. Множество замкнуто в тогда и только тогда, когда - конечно.
Доказательство. Очевидно, что любое конечное множество замкнуто как дополнение открытого. Пусть и - бесконечно. Докажем, что - незамкнуто.
Так как - бесконечно, то оно содержит счетное подмножество, которое можно рассмотреть как последовательность точек, принадлежащих . Эта последовательность ограничена в , по теореме Больцано-Вейерштрасса из нее можно выделить сходящуюся подпоследовательность. Так как замкнуто в , то предел этой последовательности . Пусть - точка, для которой является проекцией на . Возьмем произвольное открытое в множество , содержащее точку . Тогда исходя из структуры открытых множеств первого рода получаем, что содержит бесконечно много точек множества , т.е. является предельной точкой множества . При этом . Следовательно, - незамкнуто.
2. Множество не совершенно нормально.
Доказательство. Пусть дуга . Множество открыто, как объединение открытых одноэлементных множеств. Замкнутыми в являются по доказанному лишь конечные множества. Но счетное объединение конечных множеств счетно. Следовательно открыто и не является множеством типа . Таким образом множество неметризуемо.
1. Александров П.С., Пасынков Б.А. Введение в теорию размерности. – М.: Наука, 1973.
2. Энгелькинг Р. Общая топология – М.: Мир, 1986.
3. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. – М. Наука, 1989.
... , СССР; Том, С. П. Новиков) и теория сглаживания и триангулируемости (Дж. Милнор, США). Развитие Т. продолжается во всех направлениях, а сфера её приложений непрерывно расширяется. Определение топологического пространства Напомним классическое определение непрерывности числовой функции f в точке x, восходящее к Коши. Определение 1. Функция f называется непрерывной в точке x, если для любого e ...
... называется нормальным, или Т4-пространством, если для каждой пары непересекающихся замкнутых множеств А и В существуют непересекающиеся открытые множества U и V такие, что АU, BV. ГЛАВА 2. Линейно упорядоченное пространство ординальных чисел. §1.ВПОЛНЕ УПОРЯДОЧЕННЫЕ МНОЖЕСТВА И ИХ СВОЙСТВА. Рассмотрим вполне упорядоченные множества и их свойства. Предложение 1.1. Всякое ...
... T, - Объединение произвольного семейства множеств, принадлежащих T, принадлежит T, - Пересечение двух множеств, принадлежащих T, принадлежит T. Множество X вместе с заданной на нем топологией T называется топологическим пространством. Подмножества X, принадлежащие T, называются открытыми множествами. Потребность в развитии общего подхода к понятию пространства возникла довольно давно – ...
ного сложения и умножения вектора на скаляр, такими, что это множество является группой по векторному сложению и справедливы законы ассоциативности и дистрибутивности для умножения на скаляр. Выпуклым подмножеством Е векторного пр-ва Х называется такое его подмножество, что для любых его двух элементов х и у и числа q из [0, 1] элемент qх+(1-q)у принадлежит Е. Уравновешенным подмножеством Е ...
0 комментариев