3.3. Проектирование системы диагностики отказов
3.3.1. Описание системы с отказами
Для решения поставленной задачи первоначально необходимо спроектировать формирователь рассогласования и блок оценки рассогласований.
Для этого все полученные модели рассмотрим в совокупности и получим общее описание системы с отказами.
Рис. 3.3. Система и воздействующие на нее отказы
На вход исполнительного механизма поступает известный сигнал от контроллера u(t). Сигнал uR(t) - управляющее воздействие от исполнительного механизма, поступает на вход объекта управления. Выходной сигнал объекта управления yR(t) непосредственно не доступен и измеряется с помощью датчиков.
Таким образом для целей диагностики известными принимаются входные и выходные векторы системы:
u(t) – известный вход исполнительного механизма;
y(t) – измеряемый датчиками выход системы.
С учетом рассмотренных моделей элементов системы (см. (3.9) – объект управления, (3.11) – исполнительный механизм, (3.12), (3.13), (3.14) - датчики) получим следующее математическое описание системы в переменных состояния:
(3.28)
где , - входной вектор системы – сигнал управления, поступающий с контроллера на вход исполнительного механизма,
- выходной вектор системы,
- возмущающее воздействие.
В качестве возмущающего воздействия рассматривается поток жидкости поступающий в первый бак:
d(t)= Q1(t), м3/час. (3.29)
Вектор состояния системы описывается следующим образом:
, (3.30)
где h2(t) – уровень во втором баке, м;
h1(t) – уровень в первом баке, м;
х(t) – положение задвижки, м.
Как указывалось выше, в соответствии с выбранным методом формирования рассогласования необходимо использование линейной модели системы. Поэтому, выполним линеаризацию системы (3.26) в какой-либо рабочей точке.
Для разности уровней в баках h1-h2 = 0.16357,м с помощью программы Vissim 5.0, была получена следующая линейная модель:
(3.31)
где , , , .
Данная линейная модель, содержащая внешнее возмущение может быть использована при проектировании рассогласований на основе наблюдателей при неизвестном входе. При использовании наблюдателей состояния необходимо использовать описание системы в форме, не содержащей неизвестных составляющих. В этом случае будем полагать, что поток жидкости, поступающий в первый бак является известной величиной, входящей в вектор управления. Тогда линейная система будет иметь следующий вид:
(3.32)
где, , . Входной вектор системы содержит сигнал управления с контроллера – uk(t) и поток Q1(t):
. (3.33)
Когда в системе действуют все рассматриваемые отказы датчиков, компонентов и исполнительного механизма, ее модель (3.29) может быть представлена следующим образом:
(3.34)
где - вектор отказа датчиков, , - векторы отказов компонентов системы, описывающие утечку в баке и отказ задвижки соответственно, - вектор отказа исполнительного механизма.
Рассмотрим математическое описание векторов, введенных в систему отказов.
Отказы датчиков. В соответствии с уравнением (3.19) датчики подвержены мультипликативным отказам, при которых измерение становится , а i-ая составляющая вектора отказов может быть переписана так =.
Таким образом вектор отказов имеет вид:
, (3.35)
где величины отказов δsi для датчиков определяются по формулам (3.20), (3.21):
δs1={-1…1}, δs3= α∙t.
Отказы компонентов системы. В данном случае в качестве отказа компонентов системы рассматриваются протечка в баке 1 и отказ задвижки. В результате этих отказов нарушаются динамические отношения в системе: независимо от входного потока жидкости Q1 и положения задвижки х в установившемся режиме происходит изменение уровней жидкости в баках. Вектора отказов компонентов системы в соответствии с формулами (3.22)-(2.25) могут быть представлены следующим образом:
; (3.36)
. (3.37)
Отказ исполнительного механизма. Отказ исполнительного механизма, моделируемый в соответствии с уравнением (3.10), связан с изменением параметров системы, и, следовательно, является мультипликативным. Данный отказ может быть описан следующим образом:
. (3.38)
Система со всеми отказами может быть описана с помощью общего вектора отказов f(t):
(3.39)
где вектор отказов и матрицы распределения отказов имеют следующий вид:
,
, .
Запишем данную систему с отказами с помощью передаточных функций:
, (3.40)
где
(3.41)
Получим численные значения данных передаточных матриц для рассматриваемой линеаризованной системы с отказами (4.96):
, (3.42)
где ;
;
;
;
;
.
, (3.43)
где ;
;
;
.
... ). Подпрограмма завершена, управление передается назад вызывавшему модулю. 6. Технико-экономическое обоснование 6.1 Пути снижения затрат за счет внедрения системы Внедрение автоматической системы управления маслонапорной установкой гидроэлектростанции решает следующие задачи - Полностью автоматическая система управления маслонапорной установкой не требует участия человека ...
... К. Сатпаева» для просмотра и ввода информации системы оперативно-диспетчерского контроля и управления, создаваемые на Visual Basic. Специфика используемого в системе оперативно-диспетчерского контроля и управления РГП «Канал им. К. Сатпаева» ПО такая, что разработка ПО, как таковая, может производиться только при создании самой системы. Применяемое ПО является полуфабрикатом. Основная задача ...
... его инфраструктуры, а также выполнения международных обязательств по поставкам газа. 1.3 Роль договора в регулировании отношений по поставкам газа Определяя газоснабжение одной из форм энергоснабжения, законодатель ставит перед юристами-практиками трудноразрешимую задачу об определении правовой природы соответствующего договора, поскольку далее указывает, что газоснабжение представляет ...
... изолировать себя от земли (стоять на сухих досках, деревянной лестнице и т.д.). Билет № 4. ИТР ответственные за безопасную эксплуатацию ТПУ и ТС 1. Требования к персоналу. Обучение и работа с персоналом Лица, принимаемые на работу по обслуживанию теплопотребляющих установок и тепловых сетей, должны пройти предварительный медицинский осмотр и в дальнейшем проходить его периодически в ...
0 комментариев